Perspectives on Tail Risk Hedging

Juliusz Jabtecki

Based on: ,,Carry, Convexity and Reliability — Navigating Tail Risk
Hedging Dilemmas” (w. Chris Marais & Bruno Schwalbach)



With the equity market in ,,bubble territory” should we be putting on

some tail risk hedges?

Tail risk hedging can be loosely defined as a strategy designed to generate outsized returns
during rare but highly impactful events, characteristic of the “tail” of the returns distribution.
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REASONS TO CONSIDER

c/\o' “ XTR offers uncapped exposure to the growth potentialf™ of the stocks in the S&P 500 Index.

By buying protective puts, XTR seeks to mitigate significant selloffs of greater than approximately
O 0% from the purchase of the put to the options’ expiration in three months.

XTR buys put options on the S&P 500, saving investors the time and potential expense of doing so

Hedges are not a luxury

~'~as to reduce the cost of insuring your portfolio
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Option-based tail risk hedging looks straightforward in theory

1. Start with uncovered (long) equity exposure

2. Add a putoption (right but no obligation to sell underlying
at pre-agreed price)

3. Arrive at a combination with limited downside and
potentially unlimited upside

...but can be non-trivial in practice

e Many design choices give rise to difficult trade-offs

e Protection is costly and puts are expected to (mostly) expire
worthless — does hedging make sense for a long-term investor?

e Will hedges actually work when you need them most?
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The test of 2022: did put protection work?

* Start with $10 million, buy S&P 500 and roll 5% OTM puts every quarter
* Example 1: on 31-12-2021 buy S&P 500, and ~21 SPX puts (US 03/18/22 P4530)

S&P (ret) Dividends S&P (P&L) Premium cost Exercise P&L
12/31/2021 - 03/17/2022 -7.44% 30 147.60 |- 713 655.00 159667.00 258 278.00
03/17/2022 - 06/16/2022 -16.9% 34708.00 |- 1528 179.00 267 720.00 1108 225.00
06/16/2022 - 09/15/2022 6.4% 34 621.00 526 797.00 292 897.00 734.00
09/15/2022 - 12/15/2022 -0.1% 34 739.00 22 990.00 237 507.00 378 920.00
Total -18.3% 138 871.00 |- 1692 047.00 957 791.00 1746 157.00
S&P return Option P&L  |Prot Put

12/31/2021 - 03/17/2022 713655.00 98611|- 615 044.00

03/17/2022 - 06/16/2022 |- 2241 834.00 939116|- 1302 718.00

06/16/2022 - 09/15/2022 |- 1715.037.00 646953|- 1.068.084.00

09/15/2022 - 12/15/2022 (|- 1692 047.00 788366|- 903 681.00




The test of 2022: did put protection work?

 Start with $10 million, buy S&P 500 and roll 5% OTM puts
* Example 2: on 31-12-2021 buy S&P 500, and roll monthly SPX puts
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The problems

* |sthere a place for a negatively-yielding asset (strategic hedge) in a
portfolio?

* What are the key design choices and trade-offs to navigate?

* How do we come up with a thoughtful program without over-relying on
backtests (overfit to very few occurences)?

Our approach

* Frame hedge design problem as optimization between carry, convexity &
reliability

* Map these concepts to option Greeks and link to P&L attribution
* Derive testable predictions on optimal hedge design validated in backtests



You can’t always get what you want... - the ,,Greek trilemma”

. 509 & . _ = Put option value (with time value)

A long put combines: \  Positive convexity (T >0) - intrnsic value
* a negative directional 0

exposure to the underlying
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How much of each ingredient do we want, and how much are we prepared to pay for it?



Greek Trilemma a la Taylor: some theory
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* A —reliability, path-independent downside protection, but dilutes equity
exposure

* {l, v, =, \} - convexity complex, source of incremental P&L in adverse states,
but path- & state-dependent (needs sharp spot/vol moves)

* O - carry, predictable, unconditional financing cost required to maintain a
given hedge over time, independent of whether adverse market states occur.



Delta-hedging as a design choice: the good, the bad, the ugly

Daily and quarterly realized returns of delta-hedged and unhedged puts

P&L of 1Y 30A Put (window=1d)
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* The good: clean convexity without beta bleed
* The bad: removes the reliable, always-on protection channel
* The ugly: makes the hedge less intuitive, path- & horizon-dependent



Navigating Convexity vs. Carry trade-off: first glance

Shock P&L attribution for 1M, 6M & 12M SPX options (~6,000 contracts in total; pricing as of 27 Feb 2025)
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Convexity vs. Carry trade-off: Monte Carlo experiments

Hedge efficiency as a function of moneyness for a 3M and 24M delta-hedged put
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Note: E(P&L.,j) is the mean delta-hedged option return conditional on the underlying dropping by more than 2.5%; carry represents the daily
theta. To estimate E(P&L,,j), we simulate joint shocks to spot and implied volatility using a parametric model: % ~ N(O, 00\/%) and do =

B (%) +n (L) + & with S, = 100,00 = 20%and § = 1,7 = 2.
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Backtest with KISS in mind

* Universe: European S&P 500 (SPX) put options
* Maturities: 60, 90, 120, 350, 720 days to expiration
* Moneyness: 10D, 20D, 30D, 40D, 50D (delta-based strikes)

* Implementation:

 Monthly/Quarterly rolling into a new option with target maturity and
delta

* Position size scaled to provide 100% notional protection every month
* Residual cash invested in T-bills

e Sample
* Daily data, January 1996 — October 2025
* Option prices, Greeks from OptionMetrics
* Total-return indices constructed for each strategy



All strategies lose money over time... but mostly deliver when needed
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Tail payoffs differ mostly by delta, hedge costs — by maturity

1 Tail event definition
0.9 * Non-overlapping horizons:
0.8 * 1D, 1W, 1M, 1Q
0.7 * Corresponding SPX drawdown thresholds:
06 e —2%,-10%, -15%, -25%
* Tail payoff measured as conditional mean hedge
0-5 return during these events
0.4 Cost (carry) measure
0.3  Ex ante, predictable cost
0.2 * Annualized theta of the rolling hedge
01 I I * Predictable, worst-case financing rate of
0 convexity at the maturity point repeatedly visited
%\Qo/\&Qo/\éogo/\&o&@o&@ol\&go&Qo/&(&o/&@o&go&go&é&o by the strategy

Hedge efficiency=E[Hedge P&L|Tail event]/Carry

Most efficient hedge designs combine higher-delta strikes (stronger conditional tail payoffs) with the

longest feasible maturities (lowest carry).




Partial delta hedging as reliability & beta-budgeting

* Putdelta = Reliability 2 equity beta bleed
* Q:*“How much of my core equity exposure am | willing to give up, in expectation, to buy tail insurance?”
* Residual portfolio beta = (1-a) x Ap;

* Setasothatalltail hedges impose roughly the same instantaneous equity dilution of -0.1 (10D => a=0, 20D=>
a=0.5 ... 50D=> a=0.8)

Tail hedge efficiency vs. Realized Excess Return (1996-2025)
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Proof of the pudding is in the eating: tail hedging as an overlay

. ] Strategy CAGR
* Replicate SPX via Futures (SPX+)

* Pledge T-bills as collateral 10.24% 19.3% -55%

e Use cash to fund options and Zﬁfr?gTthOD‘ 7.30% 8.4% -22%

reinvest proceeds into T-bills e e —
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Concluding thoughts

* TRH can benefit portfolios, despite negative drift!
* TRH is about sourcing reliability & convexity as cheaply as possible

* The economic trade-off can be framed as a trilemma between:
» carry (predictable cost of maintaining protection),
* convexity (nonlinear payoffs in severe states),
* reliability (how consistently protection materializes along drawdown paths).

* Key insights:
* Convexity activation is well preserved over DTE (gamma ¥, but vega 1), despite clear
monotonicity in theta -> extending DTE best way to improve efficiency

* reliability is delivered through delta but dilutes equity exposure and must be rationed through
partial hedging

* General warning: a position is not a strategy — active beats passive
* Plenty more to do in the space!



Expected tail payoffs across scenarios
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Carry per strategy (annualized theta)
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