# Forecasting Stock Returns with Explainable Machine Learning Models University of Warsaw, Faculty of Economic Sciences

Krzysztof Płachta Robert Ślepaczuk

November 3, 2025

## Overview of the Study

 The study is divided into two main parts, linking predictive performance with economic interpretability.

### Part I – Model Performance Comparison:

- Evaluates and compares six machine learning models in forecasting next-day S&P 500 returns.
- Tests their performance and robustness across a 20-year period.

### Part II – Feature Importance Analysis:

- Analyzes which features drive or hinder model performance.
- Provides insight into which types of market information offer a predictive edge.

### Outline

- Motivation & Research Questions
- ② Data and Feature Engineering
- I. Model Performance Comparison
- II. Feature Importance Analysis
- Onclusion



K. Płachta & R. Ślepaczuk (2025) https://papers.ssrn.com/so13/ papers.cfm?abstract\_id=5445537

### Motivation

#### • Case for ML models:

- ML models can discover non-linear dependencies and filter noise effectively.
- Financial markets have a notoriously low signal-to-noise ratio, making ML a natural choice for predicting returns.

### Challenges:

- Many ML models exist how to select the most suitable one?
- High complexity of ML models makes interpretability difficult.
- Which data actually contains valuable predictive information?

#### Core objectives:

- Identify the ML model that best predicts next-day S&P 500 returns (binary prediction task).
- Understand how individual features contribute to model performance.

### Novelties and Contributions

### Main contributions of the study:

- Model comparison: Comprehensive evaluation of six machine learning models for binary classification of next-day S&P 500 returns over a 20-year period (2005–2024).
- XAI methodology: Development of a novel, model-agnostic framework that links the contribution of individual features to the economic performance of machine learning models.
- XAI insights: Reveals which types of information were not efficiently incorporated by the market and provided a predictive edge for short-term movements in the U.S. stock market, as well as which features carried little or no informational value.

### Research Hypotheses

- H1: ML-based trading strategies will generate significantly higher total and risk-adjusted returns than the buy-and-hold benchmark over the backtest period.
- **H2**: The performance advantage of ML-based strategies is more pronounced during bear markets and periods of high volatility.
- H3: ML-based strategies reduce overall portfolio risk, as measured by lower return volatility and smaller drawdowns.
- **H4:** Among the tested models, neural networks achieve the highest risk-adjusted performance, consistent with their capacity to capture nonlinear dependencies.
- **H5**: Feature importance analysis should show that removing features will have negative or neutral impact on the models' performance.

# Data and Feature Engineering

### Data Overview

- Custom dataset constructed using publicly available sources (Yahoo Finance, Stooq)
- Daily frequency, covering the period Jan 2000 Dec 2024 (6,289 observations)
- **Prediction target**: next-day directional return of SPY ({+1, -1})
- 20 predictive features drawn from five categories:
  - Equities, FX, Commodities, Fixed Income, Technical Indicators
- Preprocessing steps:
  - Log-returns computed for price series
  - Level variables (e.g., VIX, yields) standardized
  - All predictors lagged by one day to preserve out-of-sample integrity

## Summary Statistics of Features

| Bucket      | Feature        | Data Type     | Mean  | Std Dev | Min   | Max  |
|-------------|----------------|---------------|-------|---------|-------|------|
| Technicals  | vol_change     | fract. change | 0.06  | 0.37    | -0.83 | 4.64 |
|             | 1d_lag         | log-rets      | 0.00  | 0.01    | -0.12 | 0.14 |
|             | 5d_mom         | c. log-rets   | 0.00  | 0.02    | -0.22 | 0.18 |
|             | 21d_mom        | c. log-rets   | 0.01  | 0.05    | -0.40 | 0.22 |
|             | 63d_mom        | c. log-rets   | 0.02  | 0.08    | -0.54 | 0.34 |
|             | 252d_mom       | c. log-rets   | 0.07  | 0.17    | -0.64 | 0.57 |
| Equities    | SSE_CI         | log-rets      | 0.00  | 0.01    | -0.09 | 0.09 |
| •           | HSI            | log-rets      | -0.00 | 0.01    | -0.14 | 0.13 |
|             | Nik225         | log-rets      | -0.00 | 0.01    | -0.13 | 0.10 |
|             | Rus2000        | log-rets      | 0.00  | 0.02    | -0.15 | 0.09 |
|             | VIX            | level         | 0.20  | 0.08    | 0.09  | 0.83 |
| Rates       | 13w_TBill      | level         | 0.02  | 0.02    | -0.00 | 0.06 |
|             | $10y_{-}TNote$ | level         | 0.03  | 0.01    | 0.00  | 0.07 |
|             | yield_spread   | level         | 0.01  | 0.01    | -0.02 | 0.04 |
| FX          | usdeur         | log-rets      | -0.00 | 0.01    | -0.03 | 0.03 |
|             | usdjpy         | log-rets      | 0.00  | 0.01    | -0.04 | 0.05 |
|             | usdcny         | log-rets      | -0.00 | 0.01    | -0.06 | 0.05 |
| Commodities | WTI₋c          | log-rets      | 0.00  | 0.03    | -0.29 | 0.22 |
|             | $Gold_c$       | log-rets      | 0.00  | 0.01    | -0.09 | 0.10 |
|             | $NatGas\_c$    | log-rets      | 0.00  | 0.04    | -0.35 | 0.62 |

# Part I - Model Performance Comparison

## Selected Models and Objective Function

- Six supervised learning models covering linear, tree-based, and deep learning approaches:
  - Lasso (linear model with regularization)
  - Random Forest (tree ensemble)
  - LightGBM (gradient-boosted trees)
  - LSTM (recurrent neural network)
  - Feedforward Neural Network (1 hidden layer)
  - Feedforward Neural Network (2 hidden layers)
- Neural networks use pyramidal architectures: each hidden layer has half the neurons of the previous layer.
- Reward Function: Accuracy score

Accuracy = 
$$\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}(\hat{y}_i = y_i), \quad y_i, \hat{y}_i \in \{-1, +1\}$$

# Hyperparameter Search Spaces

| Model           | Parameter                                                                                                                                                      | Search Range                                                                                                                | Sampling                                                                                                                                                      |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Neural Networks | learning_rate<br>batch_size<br>dropout_rate<br>l1_reg                                                                                                          | $ \begin{bmatrix} 10^{-4}, 10^{-2} \\ 16, 32, 64, 128, 256 \\ \{0, 0.1, \dots, 0.5 \} \\ [10^{-6}, 10^{-2}] \end{bmatrix} $ | Log-uniform<br>Categorical<br>Categorical<br>Log-uniform                                                                                                      |  |  |
| Lasso           | С                                                                                                                                                              | $[10^{-5}, 10^3]$                                                                                                           | Log-uniform                                                                                                                                                   |  |  |
| Random Forest   | n_estimators<br>max_depth<br>min_samples_split<br>min_samples_leaf                                                                                             | [100, 500]<br>[3, 25]<br>[2, 15]<br>[1, 10]                                                                                 | Integer (uniform)<br>Integer (uniform)<br>Integer (uniform)<br>Integer (uniform)                                                                              |  |  |
| LightGBM        | n_estimators<br>learning_rate<br>max_depth<br>num_leaves<br>min_data_in_leaf<br>feature_fraction<br>bagging_fraction<br>bagging_freq<br>lambda_l1<br>lambda_l2 | [100, 1000]<br>[0.01, 0.3]<br>[3, 20]<br>[7, 255]<br>[10, 100]<br>[0.5, 1.0]<br>[0.5, 1.0]<br>[1, 10]<br>[0, 10]<br>[0, 10] | Integer (uniform) Log-uniform Integer (uniform) Integer (uniform) Integer (uniform) Uniform Uniform Integer (uniform) Uniform Uniform Uniform Uniform Uniform |  |  |

## Hyperparameter Tuning

### Requirements:

- Ensure fair tuning across models with different hyperparameters
- Limit compute cost (620+ optimization cycles across all backtests)
- Maximize validation accuracy
- Solution: Bayesian Optimization (TPE algorithm via Optuna)
  - More efficient than grid/random search (Turner et al., 2021)
  - Enables consistent trial budget across models

### Search Design:

- 50 trials per model for balanced compute
- Model-specific search spaces defined via expert judgment

## **Backtesting Framework**

- Forecasting scheme: Expanding window with annual re-estimation
  - 5-year initial training, 1-year validation
  - Roll forward one year; repeat training and tuning
- **Evaluation:** Daily predictions are strictly out-of-sample during test period
- Trading rule: Fully long or short SPY at close based on predicted sign
  - No transaction costs assumed

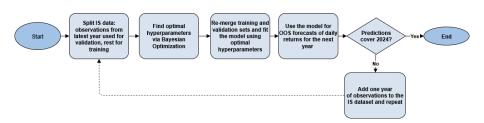


Figure: Flowchart of the backtesting procedure

### **Evaluation Metrics**

### **Equity line (per-day update):**

$$\omega_{t+1} = \omega_t \cdot (1 + \mathsf{pred}_t \cdot r_{\mathsf{SPY},t})$$

Simulated portfolio fully long or short SPY based on model prediction

### Reported metrics:

- Annualized Return Compounded (ARC)
- Cumulative return
- Maximum Drawdown (MDD)
- Number of trades
- Annualized Standard Deviation (ASD)
- Sharpe Ratio
- Sortino Ratio
- Hit Rate
- ullet Hit Rate on high-volatility days (returns exceeding  $1\sigma$  or  $2\sigma$ )

### **Backtest Results**

#### Advantages of ML strategies

- RF and LGBM achieved materially higher Sortino ratios (+33% and +24% relative to buy-and-hold strategy)
- Successful models also reduced maximum drawdown by approximately 40%

#### Limitations of ML strategies

- Neural networks underperformed significantly
- Inconsistent performance across time
- No meaningful reduction in volatility

| Model | ARC<br>(%) | Cum.<br>Ret.<br>(%) | MDD<br>(%) | # of<br>Trades | ASD<br>(%) | Sharpe<br>ratio | Sortino<br>ratio | Hit<br>rate<br>(%) | $egin{array}{c} 	ext{Hit} \ > 1\sigma \ 	ext{(\%)} \end{array}$ | Hit > 2σ (%) |
|-------|------------|---------------------|------------|----------------|------------|-----------------|------------------|--------------------|-----------------------------------------------------------------|--------------|
| RF    | 12.13      | 885.7               | -33.2      | 1008           | 19.05      | 0.48            | 0.61             | 53.90              | 50.30                                                           | 46.89        |
| LGBM  | 11.19      | 733.8               | -32.6      | 1550           | 19.06      | 0.44            | 0.57             | 52.55              | 51.59                                                           | 49.79        |
| Lasso | 10.58      | 646.2               | -36.3      | 279            | 19.06      | 0.40            | 0.49             | 54.64              | 50.26                                                           | 43.57        |
| B&H   | 10.30      | 609.8               | -55.2      | 1              | 19.06      | 0.39            | 0.46             | 55.04              | 50.15                                                           | 41.91        |
| NN2   | 8.91       | 450.5               | -51.7      | 930            | 19.06      | 0.32            | 0.39             | 53.82              | 49.43                                                           | 44.40        |
| NN1   | 5.21       | 175.8               | -59.6      | 583            | 19.06      | 0.12            | 0.15             | 53.07              | 48.51                                                           | 45.64        |
| LSTM  | 1.06       | 23.3                | -73.1      | 165            | 19.07      | -0.10           | -0.12            | 52.87              | 48.20                                                           | 45.23        |

### Models' Performance Across Time

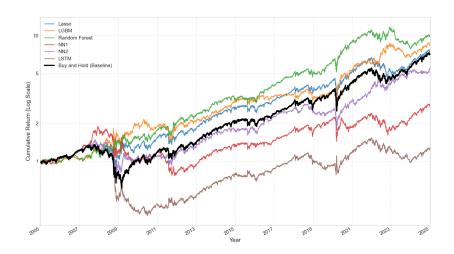


Figure: Cumulative returns of model-based strategies vs. buy-and-hold.

# Part II - Feature Importance Analysis

# Explainability Framework (XAI)

- After identifying the best model, we analyzed the importance of input features.
- We used a model-agnostic retraining approach:
  - Remove features or feature groups
  - Re-train and re-backtest
- Two levels of analysis:
  - **① Feature-wise:** Remove 1 of 20 features  $\rightarrow$  20 backtests
  - **2** Category-wise: Remove 1 of 5 feature groups  $\rightarrow$  5 backtests

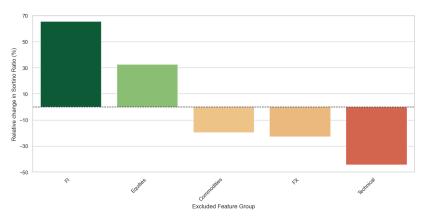
## Feature Importance Analysis Results: Individual Features

- Inclusion of some features decreased model performance.
- Removing the 10-year Treasury yield increased Sortino ratio by over 50%.
- Technical indicators had the most mixed effect on performance.



### Feature Importance Analysis Results: Buckets

- Results are consistent with individual feature elimination for Fixed Income, FX and Commodities.
- Effect of removal of Equity bucket was reverse to that observed in individual feature elimination.

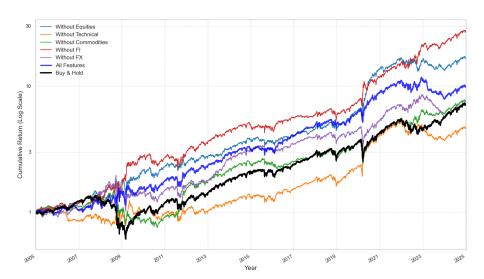


#### Detailed look at buckets elimination results

- Excluding the Fixed Income bucket produced the strongest performance across all metrics, except for the overall hit rate, which remained slightly below the buy-and-hold benchmark.
- Lower drawdowns translated into higher cumulative returns, indicating that improved downside control, rather than prediction frequency, was the key driver of outperformance.

| Model    | ARC<br>(%) | Cum.<br>Ret.<br>(%) | MDD<br>(%) | # of<br>Trades | ASD<br>(%) | Sharpe | Sortino | Hit<br>(%) | ><br>1σ<br>(%) | ><br>2σ<br>(%) |
|----------|------------|---------------------|------------|----------------|------------|--------|---------|------------|----------------|----------------|
| FI       | 17.90      | 2587.5              | -24.1      | 1168           | 19.04      | 0.79   | 1.01    | 54.29      | 52.42          | 52.70          |
| Equities | 15.10      | 1563.3              | -27.8      | 951            | 19.05      | 0.64   | 0.81    | 54.11      | 51.70          | 48.13          |
| All      | 12.13      | 885.7               | -33.2      | 1007           | 19.05      | 0.48   | 0.61    | 53.90      | 50.36          | 46.89          |
| Comm.    | 10.62      | 651.9               | -49.5      | 922            | 19.06      | 0.41   | 0.49    | 54.15      | 49.95          | 45.23          |
| b&h      | 10.30      | 609.8               | -55.2      | 1              | 19.06      | 0.39   | 0.46    | 55.04      | 50.15          | 41.91          |
| FX       | 10.36      | 616.8               | -48.1      | 951            | 19.06      | 0.39   | 0.47    | 54.01      | 51.18          | 46.06          |

## Impact of Bucket Removal Across Time



## Conclusion

## Main Takeaways

- Model choice matters performance varies substantially across algorithms, with tree-based models proving the most effective for this task.
- Feature selection is critical the predictive value of inputs differs widely across categories and time periods.
- Explainable Al adds value using XAI to assess feature relevance enables targeted model refinement and can significantly enhance performance.
- Fixed Income signals underperform yield- and rate-based variables provide little or negative predictive power for daily equity returns.

## Research Hypotheses Answered

- H1: ML-based strategies outperform buy-and-hold.
   Answer: Partially supported Tree-based models (RF, LGBM) improved risk-adjusted returns, but outperformance was episodic.
- H2: Outperformance is stronger during crises/high volatility.
   Answer: Supported in part Strong gains during 2008 crash, weaker during COVID-19 downturn.
- **H3:** ML reduces overall portfolio risk.

  Answer: Partially supported Lower drawdowns observed, but overall volatility similar to benchmark.
- H4: Neural networks achieve highest risk-adjusted performance.
   Answer: Rejected Neural networks, including LSTM, consistently underperformed other models.
- **H5:** Removing predictors uniformly degrades performance. Answer: Rejected – while this was true in most cases, in a few examples removing features drastically improved performance.

### Thank You

## Thank you for your attention!

In case of questions or comments, please reach out via email or LinkedIn (Krzysztof Płachta).

k.plachta2@student.uw.edu.pl



Scan the QR code to access the full paper on SSRN