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Abstract

The class of Affine (Jump) Diffusion [8] (AD) has, due to its closed form characteristic function
(ChF), gained tremendous popularity among practitioners and researchers. However, there is
clear evidence that a linearity constraint is insufficient for precise and consistent option pricing.
Any non-affine model must pass the strict requirement of quick calibration- which is often
challenging. We focus here on Randomized AD (RAnD) models, i.e., we allow for exogenous
stochasticity of the model parameters. Randomization of a pricing model occurs outside the
affine model and, therefore, forms a generalization that relaxes the affinity constraints. The
method is generic and can apply to any model parameter. It relies on the existence of moments
of the so-called randomizer- a random variable for the stochastic parameter. The RAnD model
allows flexibility while benefiting from fast calibration and well-established, large-step Monte
Carlo simulation, often available for AD processes. The article will discuss theoretical and
practical aspects of the RAnD method, like derivations of the corresponding ChF, simulation,
and computations of sensitivities. We will also illustrate the advantages of the randomized
stochastic volatility models in the consistent pricing of options on the S&P 500 and VIX.

Keywords: Randomized Affine-Diffusion, RAnD Method, Stochastic Parameters, Heston,
Bates, VIX, S&P 500, Short Maturity Options, Stochastic Collocation, Quantization.

1. Introduction

The class of Affine Jump Diffusion, which we abbreviate by AD, asset price models con-
stitutes a family of processes that, under certain linearity conditions, allow for a semi-closed
form characteristic function (ChF) [8]. Once the ChF is derived, it can be used, via Fourier
inversion, for pricing certain financial derivatives, thus facilitating fast asset price model cal-
ibration. Over many years, various affine models have been studied, leading to significant
contributions like efficient large-step Monte Carlo simulations, PDE discretizations, quick cal-
ibrations or even analytical, perturbation-based approximations for implied volatilities. These
accomplishments popularized the class of AD processes.

Although the high speed of “regular” option pricing is a necessary condition that allows
for calibration, it is insufficient for a model to be used for exotic derivative pricing. The main
limitation of classical dynamic stochastic volatility models driven solely by possibly correlated
Brownian motion is the limited flexibility for short maturities, i.e., the slope of the skew is
insufficient to fit the market data. By adding jumps, this effect can, to some extent, be
mitigated; however, it is often unsatisfactory, especially in a volatile market. The class of affine
models is inherently inflexible, with limited possibilities for model extensions. In particular,
with the rise in popularity of products such as options on volatility, it is evident that the
standard affine, stochastic volatility models are insufficient for accurate and consistent option
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pricing. This observation has initiated a gold rush to discover new classes of models that would
address this pricing problem.

One possible route to extend the existing affine models was suggested by P. Carr and L.
Wu in [7], where the problem of insufficient skew was reported, and the remedy of the form of
parameter randomization was suggested: “Starting from the jump-diffusion stochastic volatility
model of Bates [2], it would be tempting to try to capture stochastic skewness by randomizing
the mean jump size parameter or the correlation parameter (...) However, randomizing either
parameter is not amenable to analytic solution techniques that greatly aid econometric esti-
mation.” Although the authors considered randomization as a technique to incorporate more
flexibility into a stochastic model, thus a way to improve the calibration quality, the concept
of randomizing is more fundamental, i.e., it represents the incorporation of the uncertainty
of potentially hidden states that are not adequately captured by deterministic parameters. In
this article, we focus on the randomization of the class of affine models and allow for additional
flexibility by letting the model parameters be stochastic. In particular, we will randomize the
parameters of the Bates model and examine their impact on the shapes of implied volatilities.

Attempts to randomize individual model parameters are already known in the literature.
Starting from the simplest model, the Black-Scholes model with the randomized volatility
coefficient- based on a discrete distribution- was presented in [4]. An extension to continuous
distributions was analyzed in [19]. In their work, the authors discussed various stochastic
variants for the volatility and their level of explosiveness- this led to several valuable expansions
for short maturity options. In [20, 25], for example, it was shown that randomization of
the initial variance of the Heston model significantly increased the steepness of the implied
volatility, primarily when the randomizer is defined in an unbounded domain. This idea was
further studied in [24] where the term stationary, to describe random initial parameter, was
used. In [27] the concept of Recursive Marginal Quantization for one-dimensional diffusion
discretization schemes was discussed, with the extension to higher order schemes in [29] and
in [6] a method to discretize a stochastic process via quantization optimally was given. Another
randomization attempt was presented in [10], where the volatility-of-volatility parameter in the
Heston model was assumed to be stochastic, and approximations, based on perturbation, were
derived. In the case of a randomizer with a finite number of states, one may think of a regime-
switching model [13]. Such a setup was discussed [28], where the hidden regime continuous-time
Markov chain was considered.

Customarily, an extension with a stochastic parameter would require that the model satisfies
the linearity conditions- this, however, does not need to be the case under the framework
proposed here. Instead, we only require the affinity to hold for a particular realization of a
stochastic parameter. We build an external layer over the class of AD models and allow the
parameter to be stochastic in that layer. In a standard approach, this would imply an infinite
number of affine models, making this method impractical. The solution to this problem is
at the heart of this article, in which we develop a method for constructing an appropriate
ChF based on only a few, critical parameter realizations. Selecting these points is based
on a quadrature rule based on the moments of the stochastic parameter. The procedure of
building a randomized ChF, we call the RAnD method, which corresponds to “Randomized
Affine-Diffusion”.

The presented structure is generic, and we believe it may be applied in various asset classes.
To highlight its flexibility in modern finance, we apply this technique to the challenging problem
of consistent pricing options on S&P 500 and VIX. This pricing problem is not new, and many
innovative solutions have already been proposed.

The major challenge regarding this pricing task is to find a stochastic model that can suffi-
ciently explain both the negative skew for equity options on the S&P 500 index and the positive
skew for options on the VIX. In addition, different regime settings for implied volatility cause a
calibration dilemma where the volatility of the volatility parameter under the Heston model is
either too large for VIX or too small for S&P 500 (or both). The first attempts to address this
pricing problem aimed to introduce additional degrees of freedom in multidimensional models.
In [30], for example, the variance process in the Bates model was enriched with an additional
jump process. In [1], the so-called 3/2 process and inclusion of jumps for the stock process could
capture the observed upward skew for VIX, although the model was unable to calibrate to both
derivatives simultaneously. More recently, in [23], another attempt to include jumps in both
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returns and volatility added to stochastic volatility was discussed. The authors concluded that
more flexibility, especially with a relaxed Feller condition, is necessary to provide a sufficient
fit. A promising extension through the Hawkes process for the jumps was discussed [22]- how-
ever, additional degrees of freedom are insufficient for calibration purposes. A breakthrough
in volatility modelling came with the so-called “rough volatility” models. In [21], the asymp-
totic expansions of the rough Bergomi [3] model to jointly describe the VIX and the S&P 500
were presented. It was further extended in [18] with the application of modulated Volterra
processes. Recently, in [11], Gatheral et al. have introduced and successfully calibrated the
so-called quadratic rough Heston. Another angle to address this intriguing pricing problem was
proposed in [16], where a discrete-time dispersion-constrained martingale transport problem
was applied.

The references enumerated above unquestionably address the problem of consistent options
pricing on an index and its corresponding volatility. However, in our view, this is insufficient to
claim victory- many of the proposed solutions only work for short maturities or lack effective
numerical methods to be perceived as practical. We will show that by randomizing AD models,
one can benefit from well-established numerical techniques and the ability to price long-term
options while consistently pricing volatility products.

The article is organized as follows: in Section 2, we start with the definition of the class of
AD and give an integral form for the randomized ChF. In Section 2.1, the RAnD method is
introduced, and extensions for bivariate and multivariate parameters cases are presented. Sec-
tion 2.3 presents an illustrative example of the randomization of the Black-Scholes model. We
analyze here the computational aspects of the method and the evolution of implied volatilities.
Section 3 focuses on the randomized Bates model; here, we start with the analysis of random-
ization and its impact on the implied volatilities; also, in this section, we address what was
mentioned earlier in the introduction- the randomization of jump sizes. Further, in Section 3.1,
we provide the pricing details for VIX options, and in Section 3.2, we use derived formulae to
perform simultaneous model calibration to S&P and VIX options. Discussion about hedging
under the RAnD framework is covered in Section 3.3 and in Sections 3.4 and 3.5, the details
regarding Monte Carlo simulation with possible improvements are given. Section 4 concludes.

2. Affine (Jump) Diffusion processes and randomization

The class of stochastic AD processes for the asset dynamics refers to a fixed probability
space (Ω,F(t),Q) and a Markovian n-dimensional affine process X(t) = [X1(t), . . . , Xn(t)]

T in
some space R ⊂ Rn.

The stochastic model of interest can be expressed by the following stochastic differential
form:

dX(t) = µ̄(t,X(t))dt+ σ̄(t,X(t))dW̃(t) + J(t)TdXP(t), (2.1)

where W̃(t) is an F(t)-standard column vector of independent Brownian motions in Rn,
µ̄(t,X(t)) : R → Rn, σ̄ (t,X(t)) : R → Rn×n, and XP(t) ∈ Rn is a vector of orthogonal
Poisson processes, characterized by an intensity vector ξ̄(t,X(t)) ∈ Rn.

J(t) ∈ Rn is a vector governing the amplitudes of the jumps and is assumed to be a matrix
of correlated random variables, that are independent of the state vector X(t) and of XP(t).

Additionally, we consider an orthogonal vector Θ = [ϑ1, . . . , ϑn]
T, n ∈ N, where each ϑi

is an independent, time-invariant, random variable 1. A realization of ϑi we indicate by θi,
ϑ(ω) = θ, per se the realization for Θ is indicated by θ = [θ1, . . . , θn]

T.
For processes in the AD class, it is required that for a particular parameter realization, θ,

drift µ̄(t,X(t)), interest rate component r̄(t,X(t)), and the covariance matrix σ̄(t,X(t))σ̄(t,X(t))T

are of the affine form, i.e.

µ̄(t,X(t)) = a0(θ) + a1(θ)X(t), for any (a0(θ), a1(θ)) ∈ Rn × Rn×n,(2.2)

r̄(t,X(t)) = r0(θ) + r1(θ)
TX(t), for (r0(θ), r1(θ)) ∈ R× Rn, (2.3)

(σ̄(t,X(t))σ̄(t,X(t))T)i,j = (c0(θ))i,j + (c1(θ))
T
i,jXj(t), (2.4)

ξ̄(t,X(t)) = l0(θ) + l1(θ)X(t), with (l0(θ), l1(θ)) ∈ Rn × Rn, (2.5)

1We consider here n ∈ N stochastic parameters, this is however not a necessary constraint.
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with (c0(θ), c1(θ)) ∈ Rn×n × Rn×n×n, and where in (2.4) it is meant that each element in the
matrix σ̄(t,X(t))σ̄(t,X(t))T should be affine, as well as each vector element in the drift and
interest rate vectors.

2.1. The RAnD method: details on construction of the characteristic function

For a given realization of Θ, θ, we consider Xθ(t) := X(t)|Θ = θ, Jθ(t) := J(t)|Θ = θ. It
is shown [8] that in this class, for a state vector Xθ(t), the discounted characteristic function
is also of the following form:

ϕXθ
(u; t, T ) = Et

[
e−

∫ T
t

r(s)ds+iuTXθ(T )
]
= eĀ(u;τ,θ)+B̄T(u;τ,θ)Xθ(t), (2.6)

with the expectation under risk-neutral measure Q for τ = T − t.
The coefficients Ā := Ā(u; τ, θ) and B̄ := B̄T(u; τ, θ) have to satisfy the following complex-

valued Riccati ODEs, see the work by Duffie-Pan-Singleton [8]:

dĀ

dτ
= −r0(θ) + B̄Ta0(θ) +

1

2
B̄Tc0(θ)B̄+ lT0 E

[
eJθ(τ)B̄ − 1

]
,

dB̄

dτ
= −r1(θ) + a1(θ)

TB̄+
1

2
B̄Tc1(θ)B̄+ l1(θ)

TE
[
eJθ(τ)B̄ − 1

]
,

(2.7)

where the expectation, E[·] in (2.7), is taken with respect to the jump amplitude Jθ(t).
The dimension of the (complex-valued) ODEs for B̄(u; τ, θ) corresponds to the dimension

of the state vector X(t). Then, for stochastic parameter ϑ, the ChF is given by:

ϕX(u; t, T ) := Et[e
−

∫ T
t

r(s)ds+iuTX(T )] = Et

[
Et

[
e−

∫ T
t

r(s)ds+iuTXθ(T )
∣∣Θ = θ

]]
.

The inner expectation can be recognized as the conditional ChF in (2.6); thus, by definition of
the ChF and integration over all the parameter space, we find,

ϕX(u; t, T ) = Et

[
ϕX|Θ(u; t, T )

]
=

∫
Rn

ϕX|Θ=θ(u; t, T )fΘ(θ)dθ. (2.8)

We aim to provide numerically efficient methods for computation of ChF in (2.8).

Remark 1 (Simplified notation). The representation above is rather generic in terms of mul-
tidimensional ChF and possibly a multidimensional set of stochastic parameters. However,
such a generic case is rather exceptional, as, in a typical pricing application, a payoff function
will only depend on a single, marginal distribution (even so, possibly, driven by the multidi-
mensional system of the SDEs); therefore, for the sake of simplicity, from now on, we focus
on the derivations of the Chf for u = [u, 0, . . . ], and we denote it by u. Moreover, although
the presented framework allows for simultaneous randomization of multiple parameters, we
will consider a single stochastic parameter ϑ with θ indicating its realization. In the following
sections, we consider a finite number of realizations of ϑ; therefore, we will denote them as
θ1, . . . , θN , for some N ∈ N. These “specific” realizations we will interchangeably call either
“collocation” [15] or “quadrature” points. Finally, by ϑ(â, b̂, ·) we denote that θ is a random

variable driven by parameters, â, b̂.

To determine the ChF of an affine model with a randomized parameter, one needs to inte-
grate the parameter’s probability density function over the whole domain (2.8). This can be
avoided, i.e., the complicated integrand can be factored into a set of pairs {{ω1, θ1}, . . . , {ωN , θN}},
N ∈ N, with a nonnegative “weights” function, ωi ≥ 0, such that

∑N
n=1 ωn = 1 and specific,

collocation, points θn. Once the number of evaluations, N , is low, we can significantly reduce
the computational cost. The key element here, however, is that the pairs, {ωn, θn}Nn=1, cannot
be chosen arbitrarily but need to be computed based on the parameter’s distribution, ϑ. We
consider a random parameter ϑ with its PDF, fϑ(·), such that for a fixed number N ∈ N,
moments are finite, i.e., E[ϑ2N ] < ∞. Then we are able to determine a mapping, often called
quadrature rule, function ζ(ϑ) : R → {ωn, θn}Nn=1. We follow the approach presented by G.H.
Golub and J.H. Welsch in [12] where ωn are the quadrature weights determined based on the
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moments of the random parameter, ϑ. As explained in [12], one can calculate pairs {ωn, θn}Nn=1

based on a three-term recurrence relation which is well-known for orthogonal polynomials gen-
erated by fϑ(x), or equivalently, by the moments of ϑ. Although the technique to compute
these pairs of points is well-founded, for the readers’ convenience, the theoretical aspects and
the algorithmic details 2 are included in Appendix A.1. Throughout the article, the method
to compute these points will be denoted as ζ(ϑ) : R → {ωn, θn}Nn=1.

The RAnD method for determining the ChF with a randomized model parameter is pre-
sented in the theorem below.

Theorem 2.1 (Characteristic Function for Randomized Affine Jump Diffusion Processes).
Consider a random variable ϑ defined on some finite domain Dϑ := [a, b], with its PDF,
fϑ(x), CDF, Fϑ(x) and a realization θ, ϑ(ω) = θ such that for some N ∈ N the moments are
finite, E[ϑ2N ] < ∞. Let X(t) represent an affine state vector with some constant parameter θ.
Assuming that the corresponding ChF, ϕX|ϑ=θ(·), is well defined and 2N times differentiable
w.r.t θ, the unconditional ChF for the randomized X, exists and is given by:

ϕX(u; t, T ) =

N∑
n=1

ωnϕX|ϑ=θn(u; t, T ) + ϵN =

N∑
n=1

ωne
Ā(u;τ,θn)+B̄T(u;τ,θn)X(t) + ϵN , (2.9)

with Ā(u; τ, θn), B̄
T(u; τ, θn) are defined in (2.7) and where

ϵN =
1

(2N)!

∂2N

∂ξ2N
ϕX|ϑ=ξ(u; t, T ), (2.10)

for a < ξ < b and where the pairs {ωn, θn}Nn=1 are the Gauss-quadrature weights and the nodes
based on the parameter distribution, fϑ(·), determined by ζ(ϑ) : R → {ωn, θn}Nn=1 defined
in Appendix A.1.

Proof. Starting with the definition of the ChF and conditioning on a parameter ϑ, we find:

ϕX(u; t, T ) := Et[e
−

∫ T
t

r(s)ds+iuTX(T )] = Et

[
Et

[
e−

∫ T
t

r(s)ds+iuTXθ(T )
∣∣ϑ = θ

]]
.

Then, by definition of the ChF,

ϕX(u; t, T ) = E
[
ϕX|ϑ=θ(u; t, T )

]
=

∫
R
ϕX|ϑ=θ(u; t, T )fϑ(x)dx

=

N∑
n=1

ωnϕX|ϑ=θn(u; t, T ) + ϵN .

First, we prove that a convex linear combination of characteristic functions,
∑N

n=1 ωnϕX|ϑ=θn(u; t, T ),

and
∑N

n=1 ωn = 1 with ωn > 0 of a finite or a countable number of characteristic function is
the characteristic function.

Since ωn can be associated with probabilities, we can define a discrete random variable
P[ϑ = θn] = ωn, so we have:

N∑
n=1

ωnϕX|ϑ=θn(u; t, T ) =

N∑
n=1

E[1ϑ=θn ]Et

[
eiu

TXθn (T )
]
=

N∑
n=1

E
[
1ϑ=θne

iuTXθn (T )
]
,

since ϑ is independent of X(t). For Fubini’s theorem to hold, the boundness condition needs
to be satisfied,

N∑
n=1

E
[∣∣1ϑ=θne

iuTXθn (T )
∣∣] = N∑

n=1

E
[
1ϑ=θn

∣∣eiuTXθn (T )
∣∣] ≤ N∑

n=1

P
[
ϑ = θn

]
= 1 < ∞,

2The accompanying Python and MATLAB codes are available at https://github.com/LechGrzelak/

Randomization
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therefore:

N∑
n=1

ωnϕX|ϑ=θn(u; t, T ) = E
[ N∑
n=1

1ϑ=θne
iuTXθn (T )

]
= E

[
exp

(
iuT

N∑
n=1

1ϑ=θnXθn(T )
)
=: ϕY (u),

with ϕY (·) being a ChF of
∑N

n=1 1ϑ=θnXθn(T ).
Using the fact that the collocation points θn for n = 1, . . . , N are optimal and correspond to

the zeros of orthogonal polynomials, we relate the collocation method to Gaussian quadrature
where the integral of a complex-valued function, ϕX|ϑ=θ(u; t, T ), can be approximated by a
polynomial:∫

R
ϕX|ϑ=x(u; t, T )fϑ(x)dx−

N∑
n=1

ϕX|ϑ=θn(u; t, T )ωi =
1

(2N)!

∂2N

∂ξ2N
ϕX|p=ξ(u; t, T ) =: ϵN ,

with fϑ(x) the weight function, and ωn the quadrature weights. The error is given by ϵN , for
a < ξ < b, and the pair {ωn, θn}Nn=1 are the Gauss-quadrature weights and the nodes based on
the parameter distribution as proven in [5] (p.180, Theorem 3.6.24). ■

Theorem 2.1 illustrates that the ChF of the randomized AD model is a weighted sum of
a set of conditional ChFs evaluated at certain realizations, θn, of the underlying stochastic
parameter ϑ. The theorem also shows, in Equation (2.10), the exponential decay of the error
in terms of N associated with the quadrature approximation- suggesting that only a few terms
will be needed to reach high-precision.

The key feature of the RAnD method is its ability to facilitate fast evaluation of the
randomized ChF (2.9). The construction of the ChF is based on the randomized variable, ϑ, via
its 2N moments, i.e., the availability of the moments allows us to determine ζ(ϑ) which provides
the quadrature points {ωn, θn}Nn=1. It is, therefore, essential that the randomizing variables
enable the closed-form moment calculation. Moreover, when specifying a randomizing variable,
its support must correspond to the physical range of the randomized parameter; for example,–
some of the model parameters may be only valid for specific ranges, such as correlation or
volatility coefficients. In Table 1, a few possible distributions with their corresponding moments
are provided. When analytical moments are available, the computation of the corresponding
points only requires the computation of a Cholesky decomposition and certain eigenvalues
(see Appendix A.1); it is therefore computationally cheap.

Table 1: Selected distributions for the stochastic parameters. For the normal random variable
with some mean, µ, and variance, σ2, it is sufficient to consider standard normal distribution,
N (0, 1), and properly scale the θn points, obtained from Algorithm 1.

name raw moment domain

ϑ ∼ U([â, b̂]) E[ϑn] = b̂n+1−ân+1

(n+1)(b̂−â)
[â, b̂]

ϑ ∼ exp(â) E[ϑn] = n!
ân R+

ϑ ∼ N (0, 1) E[ϑn] = (n− 1)!! if n even; 0 otherwise R
ϑ ∼ Γ(â, b̂) E[ϑn] = b̂nΓ(n+ â)/Γ(b̂) R+

ϑ ∼ χ2(â, b̂) E[ϑn] = 2n−1(n− 1)!(â+ nb̂) +
∑n−1

j=1
(n−1)!2j−1

(n−j)!
(â+ jb̂)E[ϑn−j ] R+ ∪ {0}

2.2. Pricing with the RAnD method

We will focus on pricing two different plain vanilla options, namely European options on
an asset, S(t), and options on the associated volatility, VIX. The pricing will rely on a Fourier
inversion method, namely the COS method [26], which, by a change of the pricing coefficients,
Hk and the corresponding ChF allows for pricing of both contracts. The generic pricing
equation is given by:

V (t0) = e−r(T−t0)

Nc−1∑′

k=0

ℜ
[
ϕX

(
kπ

b− a
; t0, T

)
exp

(
−ikπ

a

b− a

)]
·Hk + ϵc1 , (2.11)
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where Nc represents the number of expansion terms, ℜ(·) is the real part and where Hk for
k ≥ 0 are known in closed-form coefficients corresponding to the payoff function. We will
use the Hk coefficients derived for European-style call/put options (see [26] for details) and
for options on VIX (presented later, in Section 3, Lemma 3.2). Parameters, a and b are the
tuning parameters used to determine the integration range; while the error ϵc1 , is exponentially
decaying in Nc.

Remark 2 (Inversion of the randomized ChF). The application of Fourier inversion to the
randomized ChF in (2.9) yields,

fX(x) =
1

2π

∫
R
e−iux

N∑
n=1

ωnϕX|ϑ=θ(u; t, T )du =

N∑
n=1

ωnfX|ϑ=θ(x). (2.12)

Since ω1 + · · · + ωN = 1, ωn ≥ 0, for n = 1, . . . , N , which implies that the density of the
affine, randomized, system of SDEs, X(t) can be expressed as a, possibly multi-modal, mixture
distribution. Although the exact representation for the density fX(·) may be challenging to
derive analytically, one can use Fourier inversion to recover the corresponding density and
utilize it for swift option pricing.

A natural extension of the RAnD method is to consider two parameters that are stochas-
tic and follow a bivariate distribution. Such an extension would require that the conditional
moments are known explicitly- which is somewhat troublesome. To this day, only a few distri-
butions allow for exact moments. However, if we stay, for example, within the Gaussian world,
such an extension to a 2D case is trivial. Corallary 2.1 gives us the general details.

Corollary 2.1 (Random parameters with bivariate distribution). Under a bivariate distribu-
tion Θ = [ϑ1, ϑ2] with ζ(ϑ1) = {ω1,n, θ1,n}Nn=1 and conditioned on ζ(ϑ2|ϑ1) = {ω2,n, θ2,n}Nn=1,
the randomized ChF is given by:

ϕX(u; t, T ) =

N∑
n1=1

ωn1

N∑
n2=1

ωn2ϕX|ϑ1=θn1
,ϑ2=θn2

(u; t, T ) + ϵ̃N , (2.13)

where N indicates the number of expansion terms, ϑ2|ϑ1 indicates a conditional random vari-
able, and the remaining specification follows Theorem 2.1.

2.3. Illustrative case: the RAnD Black-Scholes model

As the first example for the RAnD method, let us consider the randomized Black-Scholes
(RAnD BS) model. Given the probability space (Ω,F(t),Q), we define a stock S(t) := {S(t, ω) :
t ∈ T} and the randomizing volatility σ := {σ(ω) : Ω → R+}, with some constant interest rate,
r. We consider three different, continuous, randomizers for σ, i.e., we assume the volatility
parameter, σ, to either follow a uniform distribution, σ ∼ U([·, ·]), gamma distribution, σ ∼
Γ(·, ·), or the non-central chi-squared distribution, σ ∼ χ2 (·, ·); thus, also mimicking a similar
structure as in the Heston model where the CIR dynamics drive the variance process (see
Equations (3.1) and (3.2) for the exact relation).

Formally, the RAnD BS model is given by the following dynamics:

dS(t) = rS(t)dt+ σS(t)dW (t), S(t0) > 0,

σ ∼ U([â, b̂]), or σ ∼ Γ(â, b̂), or σ ∼ âχ2(b̂, ĉ),

for â, b̂, ĉ ∈ R+. As it will be presented later, the randomization of the BS model is elegant as
it allows for a generation of the European option prices in closed form (see [4] where discrete
randomizers for the BS model were covered). However, since the randomized volatility is time-
invariant, or stationary, such a model cannot compete with, e.g. the model of Heston, where
the volatility has a term structure, and it is driven by a correlated stochastic process. Contrary
to the Heston model, however, the RAnD BS model does not require Fourier transformation
to price options.

We have two techniques to compute option prices of the randomized Black-Scholes model.
First, a straightforward approach is based on the closed-form solution of the “unrandomized”
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model. The second method is based on randomization at the ChF level. By application of
the RAnD method and conditioning on the volatility realizations, the price of a European call
option, for t0 = 0, reads:

V (t0) = e−rTEt0 [max (S(T )−K, 0)]

= e−rTEt0

[
Et0

[
max (S(T )−K, 0)

∣∣σ = σn

]]
= e−rTEt0 [Vc(t0, T,K, S(t0), r, σn)] ,

with Et0 [·] being the expectation operator with filtration F(t0), where Vc(t0, T,K, S(t0), r, σn)
represents a European call option price with strike K, expiry T and the corresponding interest
rate r, and it is defined in (2.15) below. The price V (t0) is now given by:

V (t0) = e−rT

∫
R+

Vc(t0, T,K, S(t0), r, x)fσ(x)dx

= e−rT
N∑

n=1

ωnVc(t0, T,K, S(t0), r, σn) + ϵ̂N , (2.14)

where pairs {ωn, σn} are the weights and the quadrature points, determined based on the
distribution of σ(ω) and are computed using Algorithm 1 in Appendix A.1, ϵ̂N is the quadrature
error defined in (2.9).

At each realization σn, the pricing is known in closed form and is given the Black-Scholes
formula:

Vc(t0, T,K, S(t0), r, σn) = S(t0)FN (0,1)(d1)−KFN (0,1)(d2)e
−r(T−t0), (2.15)

with d1 = 1√
σ2
n(T−t0)

[
logS(t0)/K +

(
r + 1/2σ2

n

)
(T − t0)

]
, d2 = d1 −

√
σ2
n(T − t0).

Remark 3 (Continuous randomizers for the BS model- previous attempts). Early attempts
to randomize the Black-Scholes model using continuous random variables are already known in
the literature. In [19], the authors have randomized the variance of the Black-Scholes model by
a CEV-generated distribution. The primary aim of such randomization was to achieve the so-
called moderately explosive distribution allowing for enhanced skew. The presented framework,
however, although via the asymptotic expansion allowed for short-maturity proxies for the im-
plied volatilities, is very much problem and randomizer specific. Moreover, due to the nature of
the expansion, it performs well only for short-expiry derivatives, contrary to the RAnD method
discussed in this article.

2.3.1. Randomization of the ChF under the Black-Scholes model

The presented randomization technique is not limited to the Black-Scholes model, where a
closed-form solution exists for each volatility realization, σn. In order to achieve more flexibility
and be able to price challenging derivatives, the stochastic volatility models, like the Heston
and Bates models, will be considered. A numerical routine, like Fourier inversion, needs to
be used. Although such inversions are swift due to exponentially convergent methods, like
the COS method [26], it is important to keep the number of inversions as low as possible.
This requirement suggests that a preferred way to compute a randomized option price is via
randomization at the ChF level, introduced in (2.9), which for the RAnD BS model is given
by the following expression,

ϕX(u; t0, T ) =

N∑
n=1

ωn exp
(
iuX(t0) + (r − 1

2
σ2
n)iu(T − t0)−

1

2
σ2
nu

2(T − t0)
)
+ ϵN , (2.16)

with X(t0) = logS(t0), the error ϵN defined in (2.9).
The pricing of European-style options can be performed using the expansion formula

in (2.11).
At this point, one can still employ the pricing equation (2.11) to (2.14); however, it would

require N evaluations of the pricing equation in (2.11). Since the strength of the COS method
is its ability to compute option prices for a range of strikes K, it is important to keep the
number of vector-matrix multiplications in (2.11) to a minimum; it is, therefore, beneficial
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to evaluate the pricing only once- thus the randomization should take place at the ChF level
(as a ChF does not depend on strikes). An additional element that needs to be considered
is the generated error, i.e., depending on the smoothness of the option value (2.14) or the
corresponding ChF (2.16), error ϵ̂N may differ from the ϵN in (2.14).

2.3.2. RAnD BS model: convergence and implied volatilities

In order to assess the convergence of the RAnD method and the impact of the randomization
on implied volatilities, we consider a numerical experiment, where two pricing approaches,
presented in the previous section, will be compared. In particular, we are interested in the
implied volatility behaviour for short maturity options (T = 0.1), as this is often considered a
challenging case. We start by specifying the parameters for the randomizing random variables
(see Table 2). With the distributions given, we are able to determine the corresponding pairs

Table 2: Parameters used in the RAnD BS model simulation. For the non-central chi-square
distributions, the parameters were chosen based on the Heston model (see Dynamics (3.1)),
with: γ = 1.9, κ = 0.5, v̄ = 0.3, v0 = 0.3, T = 0.1.

â b̂ ĉ

σ ∼ U([â, b̂]) 0.1 0.45 -

σ ∼ Γ(â, b̂) 2.55 0.1 -

σ ∼ âχ2(b̂, ĉ) 0.088 0.1662 3.2417

{ωn, σn}, for n = 1, . . . , N . These points are based on the moments of the randomizing random
variable (see Table 1) and utilization of Algorithm 1. Figure 1 (left) illustrates the method’s
convergence regarding the number of collocation points N . Surprisingly, for the randomized
Black-Scholes model, it does not matter whether the randomization takes place at the price
level or the corresponding ChF. However, the convergence rate is affected by the associated
randomizer. We report the highest convergence speed for the uniform distribution, lower
for gamma, and the slowest convergence rate for the non-central chi-square randomizer. The
phenomenon can be explained by the amount of randomness introduced to the pricing equation.

2 4 6 8 10 12
N

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2
Convergence results for the RAnD BS model

Figure 1: Left: The RAnD method convergence for the number of collocation points N .
Red markers correspond to the results obtained based on analytical expression (2.14),
and blue lines correspond to Fourier expansion (2.16). The “error” is the difference
between option prices against the reference, fetched with 5 million paths. The summation
is over the entire range of option strikes. Right: Implied volatility surface for the RAnD
BS model for σ ∼ U([â, b̂]).

In Figure 1 (right), the impact of σ ∼ U([â, b̂]), on the implied volatilities is illustrated (the
remaining cases are illustrated in Appendix A.2 in Figure A.10). As expected, the RAnD BS
model can generate an implied volatility smile. However, because of the independence between
the stock’s Brownian motion and the randomizer, the skew control is limited, irrespective of
the randomizing distribution. It is important to note that by introducing stochastic but time-
invariant volatility, we can generate an implied volatility surface that develops in time from
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a very peaked, almost explosive, to a flattening shape. The implied volatility surface pattern
is very similar in all three cases. The RAnD BS model could be further extended, with, for
example, a displacement parameter that would introduce skewness in the model, thus further
extending the applicability of the Black-Scholes model’s standard.

In the final experiment for the RAnD BS model, we report the convergence rate in terms of
the implied volatilities in Table 3. We see that the convergence is not affected by the maturity
time T . We expect that, with stochastic volatility models, the convergence will depend on
the time-to-expiry. The results are excellent; for N = 6 points, the maximum absolute error
is about 0.05 − 0.07%, which is a convincing result and implies that the method can be used
for accurate model calibration and pricing. As expected, the reported errors depend on the
randomizing variable (compare Table 3 against Table A.5 in Appendix A.5).

Table 3: Maximum implied volatility, IV(·), error computed against Monte Carlo results with

10 million samples, with K = S0e0.1
√
Tδ, δ = [−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3].

error = maxi
∣∣IV(Ki)− IVref(Ki)

∣∣
σ ∼ Γ(â, b̂) N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

T = 1d 0.56 % 0.26 % 0.15 % 0.10 % 0.07 % 0.06 % 0.05 % 0.04 %
T = 1w 0.56 % 0.26 % 0.15 % 0.10 % 0.07 % 0.06 % 0.04 % 0.04 %
T = 2w 0.55 % 0.25 % 0.14 % 0.09 % 0.06 % 0.04 % 0.03 % 0.03 %
T = 1m 0.54 % 0.24 % 0.13 % 0.08 % 0.06 % 0.04 % 0.03 % 0.03 %
T = 3m 0.54 % 0.24 % 0.13 % 0.08 % 0.05 % 0.04 % 0.03 % 0.02 %
T = 6m 0.55 % 0.25 % 0.14 % 0.09 % 0.07 % 0.05 % 0.04 % 0.03 %
T = 12m 0.56 % 0.26 % 0.15 % 0.10 % 0.07 % 0.05 % 0.04 % 0.04 %

Further analysis regarding randomization and implied volatility shapes will be discussed
later in the context of the Heston and the Bates models.

3. The RAnD framework and pricing of plain vanilla and VIX options

This section focuses on applying the RAnDmethod to stochastic volatility and jump models.
In particular, we will consider the Bates [2] model, which forms an elegant extension of the
model of Heston [17]. From the pricing perspective, the characteristic function of both models
is known analytically. Although some may argue that managing jumps in the pricing framework
is of limited value, especially for hedging, it is well known that pure stochastic volatility, affine,
models cannot generate sufficient skew for short maturity options. Adding jumps to calibrate
short-maturity options is often a preferred choice. However, it is often insufficient. Our goal
is to use the RAnD method and apply it to the challenging task of simultaneous pricing of
plain-vanilla and VIX options. In particular, we illustrate the ability to fit both option markets
simultaneously by randomizing some Bates model parameters.

Randomization of individual Heston model parameters is known in the literature. Initial
random volatility was discussed in [24, 20, 25], and in [10], the perturbation-based approxima-
tions for stochastic vol-of-vol parameter were derived.

We will focus on the Bates model: the corresponding ChF, pricing of plain-vanilla and VIX
options and calibration, under the RAnD method, to market data.

The Bates model, under the Q measure, is described by the following system of SDEs:

dS(t)/S(t) =
(
r − λE[eJ − 1]

)
dt+

√
v(t)dWx(t) +

(
eJ − 1

)
dXP(t),

dv(t) = κ (v̄ − v(t)) dt+ γ
√

v(t)dWv(t),
(3.1)

with Poisson process XP(t), intensity λ, and normally distributed jump sizes, J ∼ N (µj , σ
2
j ),

with E[eJ ] = eµJ+
1
2σ

2
J . XP(t) is assumed to be independent of the Brownian motions and

the jump sizes. There is a correlation ρ between the governing Brownian motions, ρdt =
dWx(t)dWv(t). Under this model the variance process follows the non-central chi-square dis-
tribution, χ2(δ, κ̄(·, ·)) with δ degrees of freedom and non centrality parameter κ̄(t0, t),

v(t)|v(t0) ∼ c̄(t0, t)χ
2(δ, κ̄(t0, t)), (3.2)
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where

c̄(t0, t) =
γ2

4κ
(1− e−κ(t−t0)), δ =

4κv̄

γ2
, κ̄(t0, t) =

4κe−κ(t−t0)v(t0)

γ2(1− e−κ(t−t0))
. (3.3)

Under a log transformation, the dynamics of the stock, X(t) = logS(t), belongs to the class of
affine jump-diffusion processes, and it reads:

dX(t) =
(
r − 1

2v(t)− λE[eJ − 1]
)
dt+

√
v(t)dWx(t) + JdXP(t),

so that, given Theorem 2.1, we can derive the corresponding, randomized, ChF, which is given
by the following expression:

ϕX(u; t, T ) =

N∑
n=1

ωne
iuX(t)+C̄(u,τ ;θn)v(t)+ĀB(u,τ ;θn) + ϵN , (3.4)

for τ = T − t, with complex valued functions ĀB(u; τ, θn) and C̄(u; τ, θm), given in Appendix
A.3. The third argument θn represents a particular realization of model parameter, ϑ ∈
{v0, λ, γ, ρ, µJ , σJ , κ, v̄}, that we wish to randomize.

Once the RAnD ChF is derived, it is worth checking the convergence concerning the number
of summation terms, N , in (3.4). As an example, in Figure 2 the convergence for randomization
of the vol-vol parameter, γ, with two distributions, uniform, U , and gamma distribution, Γ, is
depicted. The convergence rate depends on the distribution itself but also on its parameters.
In both cases, the convergence rate is excellent; however, as expected, it is much faster for a
uniform distribution than for the gamma distribution. In both cases, satisfactory results will
be accomplished for N = 5. Randomization of other model parameters has shown equivalent
convergence patterns.

2 3 4 5 6 7 8 9
N

-24

-22

-20

-18

-16
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N
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-8
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-6

-5

Figure 2: Convergence results for randomization of vol-of-vol parameter, γ under the
Bates model with: T = 31/365, r = 0, µJ = −0.25, σJ = 0.05, λ = 0.1, κ = 0.5,
γ = 0.72, v̄ = 0.1, ρ = −0.85 and v0 = 0.0625. Left: γ ∼ U(â, b̂) for varying â and b̂;
Right: γ ∼ Γ(â, b̂) for varying â and b̂.

The impact of the randomization for the Bates model can be analyzed with the ChF in (3.4).
In particular, the time evolution of the implied volatility surface for randomized vol-vol, γ, and
the jump amplitude parameter, µJ , is presented in Figure 3. The results are insightful, showing
that the RAnD method can magnify the skewness of short-maturity options. Intriguingly, the
evolution of the skew differs for both parameters, i.e., randomized γ allows for slow skew decay
towards the benchmark- the basic Bates model, while the randomization of µJ generates much
more rapid decay. Depending on the market data, both shapes may be desired.

Because of the flexibility of the RAnD method, the randomization of all the Bates model
parameters can be analyzed. As discussed earlier, one can specify a variety of distributions (see
Table 1) for the model parameters. In Figure 4 and Figure 5, the impact of randomization with
different distributions and parameters is compared against the benchmark. Randomization
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Figure 3: Implied volatility surface for RAnD Bates model. Left panel: randomized
vol-vol, γ ∼ Γ(1, 0.5). Right panel: randomized jump’s mean, µJ ∼ N (−0.1, 0.2).
Other model parameters are r = 0, µJ = −0.1, σJ = 0.06, λ = 0.08, κ = 0.5, γ = 0.5,
v̄ = 0.13, ρ = −0.7, T = 1/12, and v0 = 0.13.

enables flexible control of the implied volatility shapes. In this experiment we choose the
reference model parameters (r = 0.0, µJ = −0.1, σJ = 0.06, λ = 0.08, κ = 0.5, γ = 0.5,
v̄ = 0.13, ρ = −0.7, v0 = 0.13 and T = 1/12), and perform one-by-one randomization.

Starting with γ, in the left panel of Figure 4, we report a significant impact on the curvature
and the skew. Randomization of v0 (right panel of Figure 4) mainly affects the implied volatility
level; however, some curvature effect is also present. The randomization of the correlation (left
panel of Figure 5) generates the rotation of the implied volatilities around the ATM level.
Another striking effect is reported for µJ where only the volatilities far from the ATM level
are affected, i.e., one can control either the left or the right tail while keeping the ATM level
fixed. The remaining parameters are presented in Figure A.11 and Figure A.12 in Appendix
A.6.
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Figure 4: Impact of randomized parameters on implied volatilities. Left: randomized
vol-vol, γ. Right: randomized initial vol, v0.

3.1. Vix option pricing under the randomized Heston model with jumps

For a given fixed time-horizon [t, T ], the volatility index of an asset S(t), denoted as vix(t, T )
is defined as:

vix
2
(t, T ) = 1002 × −2

T − t
Et

[
log

S(T )

S(t)

]
, (3.5)

where Et[·] indicates the expectation taken under under the risk-neutral measure Q and the
natural filtration F(t). The VIX formulation in (3.5) represents the annualized square root of
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Figure 5: Impact of randomized parameters on implied volatilities. Left: randomized
correlation, ρ. Right: randomized jump’s mean, µJ .

the price of a contract, where the most liquid options are for T − t = 30 days. The scaling with
100 relates to a percentage representation of the volatility.

Depending on the dynamics chosen for stock S(t), the expression in (3.5) may be derived
in closed-form. In particular, for the case of the Bates model: the closed-form expression for
the expectation and the probability density function, fvix(x; t, T ), are known explicitly and are
presented in Lemma 3.1 below.

Lemma 3.1. Under the Bates model (3.1), the VIX defined in (3.5) is expressed by:

vix
2
(t, T ) = 1002 × vix2(t, T ), (3.6)

vix2(t, T ) = a(t, T )v(t) + b(t, T ) + c, (3.7)

where

a(t, T ) =
1− e−κ(T−t)

κ(T − t)
, b(t, T ) = v̄ (1− a(t, T )) , c = 2λ

(
eµJ+

1
2σ

2
J − µJ − 1

)
,

and v(t) follows a non-central chi-square distribution, defined by the CIR process in (3.1). λ
represents the Poisson intensity, and µJ and variance σ2

J are the parameters for the jumps
magnitude, J ∼ N (µJ , σ

2
J). The PDF of vix in (3.7), is given by:

fvix(x; t, T ) = 2α1xfχ2(δ,κ̄(t0,t))

(
α1(x

2 − α2)
)
, (3.8)

where α1 = 1
a(t,T )c̄(t0,t)

and α2 = b(t, T ) + c with δ, κ̄(·, ·) and c̄(·, ·) defined in (3.3). Finally,

the ChF for vix2(t, T ) is given by:

ϕvix2(t,T )(u) = eiu(b(t,T )+c)

(
α1

α1 − 2iu

) 1
2 δ

exp

(
iua(t, T )c̄(t0, t)κ̄(t0, t)

1− 2iua(t, T )c̄(t0, t)

)
. (3.9)

Proof. The proof can be found in Appendix A.4. ■

Given the results from Lemma 3.1 and the availability of the ChF (3.9) for VIX defined
in (3.5), we consider a European option with strike priceK and expiry T , whose terminal payoff
is described as max(vix(T, T + δT )−K, 0), with δT is equal to 30 days. According to the risk-
neutral valuation theory, the option price at time t, denoted by Vvix(t), can be expressed as
the discounted conditional expectation of the terminal payoff under the risk-neutral measure,
Q:

Vvix(t) = e−r(T−t)Et

[
max(vix(T, T + δT )−K, 0)

]
= 100× e−r(T−t)

∫
R+

max(
√
v −K, 0)fvix2(v;T, T + δT )dv, (3.10)
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for K = 100×K and vix(·, ·) defined in (3.6). Since the ChF for vix2(·; ·, ·) is explicitly known
(see Equation (3.9)), we utilize the Fourier expansion from (2.11). The missing ingredients are
the payoff-dependent coefficients Hk. These coefficients are provided by Lemma 3.2.

Lemma 3.2. Assuming, a < K2, the Hk coefficients, defined in (2.11) are given by:

Hk =
2

b− a

∫ b

a

max(
√
y −K, 0) cos

(
kπ

y − a

b− a

)
dy

=:
2

b− a
I1(k)−K

2

b− a
I2(k),

where two integral terms I1(k) and I2(k) are given by:

I1(k) :=


a0

[
sin(k2) (CF (a1)− CF (a2)) + cos(k2) (SF (a2)− SF (a1))

]
+a5

[√
b sin(a3)−K sin (a4)

]
, k ̸= 0,

2
3 (b

3
2 −K3), k = 0,

and

I2(k) :=

 a5 [sin (a3) + sin (−a4)] , k ̸= 0,

(b−K2), k = 0,

with k1 = kπ
b−a , k2 = akπ

b−a , a0 =

√
π
2

k1
3/2 , a1 =

√
bk1

2
π , a2 = K

√
k1

2
π , a3 = bk1 − k2, a4 =

K2k1 − k2, a5 = 1
k1

and where CF (·) and SF (·) are the so-called Fresnel integrals defined as:

CF (x) =

∫ x

0

cos(t2)dt, SF (x) =

∫ x

0

sin(t2)dt.

Proof. After the change of variables, x =
√
y, the integration is straightforward. ■

By semi-analytic expressions for pricing options on the underlying S(t), via Equation (2.11)
and on the VIX, in (3.10), we can calibrate the randomized AD models. The pricing formulae
depend on the integration ranges [a, b] that needs to be chosen carefully. It is advised to choose
it based on the cumulants, which have been derived for VIX derivatives in [22]. We report,
however, that calibration of VIX derivatives may result in rather extreme parameters giving
rise to numerical instabilities. Since we can utilize the analytically known distribution for vix,
the pricing may also be performed by directly integrating the payoff function and employing
the PDF in (3.8):

Vvix(t) = 100× 2α1e
−r(T−t)

∫
K

x(x−K)fχ2(δ,κ̄(t,T ))

(
α1(x

2 − α2)
)
dx,

with α1 and α2 in (3.8) and δ, κ̄(t, T ) defined in (3.3). With one of the model parameters
stochastic, the RAnD pricing equation reads:

Vvix(t) = 100× 2α1e
−r(T−t)

N∑
n=1

ωn

∫
K

x(x−K)fχ2(δ,κ̄(t,T ))

(
α1(x

2 − α2); θn
)
dx,

where θn in fχ2(·,·) (·; θn) indicates a particular realization of the model parameter and ωn

corresponds to its weight.

3.2. Market data experiment: calibration to S&P500 and VIX options

This section illustrates how the randomized Bates (RAnD Bates) model can fit implied
volatilities for S&P 500 and VIX. In the experiment, we consider three randomly selected dates:
02/02/2022, 13/05/2022 and 14/07/2022, for which the calibration exercise was performed. In
addition, we have considered short expiry options of one month in all the cases- a challenging
task for conventional stochastic volatility models. The calibration was performed in two stages;
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in the first step, the pure Bates model was calibrated to European S&P 500 options, and such
attained parameters form an initial guess for the RAnD Bates model. Then, the optimization
was performed with the target function, including implied volatilities on S&P 500 and VIX. In
the calibration, an additional weight for the ATM level was used. In this calibration stage, we
have used the randomized vol-vol parameter γ and randomized it with a uniformly distributed
random variable, γ ∼ U([â, b̂]).

The calibration results are presented in Figures 6,7,8. For all three cases, the results were
compared against the Bates model (indicated by the red line). We conclude that jumps in
the Bates model allow for a good fit for European options on the index (illustrated in the left
panels). However, it is also clear that the Bates model does not have sufficient flexibility to fit
VIX options (right panels). The standard Bates model gives results significantly outside the
bid-ask spreads for all three studied cases.

The calibrated parameters for the RAnD Bates model are reported in Table 4. The results
are excellent, i.e., for all three cases, we can calibrate to both products simultaneously, and the
implied volatilities for the RAnD Bates model for VIX were well within the bid-ask spreads.
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Figure 6: Calibration results of the RAnD Bates model. The implied volatilities for
S&P and ViX were obtained on 02/02/2022. Dotted lines indicate bid-ask spreads.
Left: S&P, Right: VIX.
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Figure 7: Calibration results of the RAnD Bates model. The implied volatilities for
S&P and ViX were obtained on 14/07/2022. Dotted lines indicate bid-ask spreads.
Left: S&P, Right: VIX.

It is important to remember that the calibration of the randomized models, especially for
models like the Bates model with multiple parameters for stochastic volatility and jumps, is
not trivial. For that reason, we have used the standard Bates model parameters as the initial
guess for the RAnD framework- otherwise, one may encounter the well-known problem of the
possibility of ending up in a local minimum.
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Figure 8: Calibration results of the RAnD Bates model. The implied volatilities for
S&P and ViX were obtained on 13/05/2022. Dotted lines indicate bid-ask spreads.
Left: S&P, Right: VIX.

Table 4: Parameters determined in calibration of S&P and VIX

Calibrated RAnD Bates parameters
date κ v0 v̄ ρ µJ σJ λ γ

02/02/2022 0.5 0.1702 0.23 -0.65 −0.25 0.05 0.25 γ ∼ U([0.01, 2.3])
13/05/2022 0.14 0.2672 0.28 -0.8 −0.25 0.02 0.1 γ ∼ U([0.002, 2.1])
14/07/2022 0.5 0.2502 0.10 -0.85 −0.25 0.05 0.15 γ ∼ U([0.05, 1.4])

3.3. Hedging under the RAnD method

Using the pricing Equation (2.11), one can find the hedge parameters ∆ and Γ explicitly [26].
However, it is a rather involved task to compute the sensitivity to the model parameters, or
the parameters of the randomizer need to be computed.

Typically, when the market data changes, a model needs to be re-calibrated, requiring
a trader to hedge each parameter. Applying the RAnD method allowed us to make use of
randomized processes; it led us to a marginal density for the asset price as a convex combination
of affine densities (see Remark 2). Conversely, the option price can be represented as the same
convex combination among the corresponding option prices. Moreover, due to the linearity
of the derivative operator, the same convex combination applies to all option Greeks. In
particular, this ensures that starting from analytically tractable affine densities, one deals with
a model that preserves the analytical tractability. Let us consider a scenario in which a model
parameter θ follows a specific distribution with a parameter â. Under such a randomized
model, the sensitivity of the derivative price, V (t0), should be calculated to the parameter,
â, that drives the parameter’s randomness. The RAnD framework uses the randomized ChF,
which must be differentiated to compute the sensitivities. By differentiation of the pricing,
Equation (2.11), for Ā := Ā(u; τ, θn) and B̄ := B̄T(u; τ, θn), we find:

∂V (t0)

∂â
= e−r(T−t0)

Nc−1∑′

k=0

ℜ
[
exp

(
−ikπ

a

b− a

)
∂

∂â
ϕX

(
kπ

b− a
; t0, T

)]
·Hk + ϵc2 , (3.11)

with:

∂

∂â
ϕX (u; t0, T ) =

N∑
n=1

ϕX|ϑ=θn(u)

[
∂ωn

∂â
+ ωn

(
∂Ā

∂θn
+X(t)

∂B̄

∂θn

)
∂θn
∂â

]
, (3.12)

where ϕX|ϑ=θn(u) = eĀ(u;τ,θn)+B̄T(u;τ,θn)X(t), with Hk the payoff coefficient (independent of
the model parameters). Error ϵc1 is a function of ϵc1 in (2.11) and the quadrature error, ϵN ,
in (2.9). The expression in (3.12) involves derivatives of the ChF with respect to the model
parameters ∂Ā/∂θn and ∂B̄/∂θn, which may to be derived analytically, and the sensitivity to
the quadrature pairs, {ωn, θn}, ∂θn/∂â and ∂ωn/∂â. Since the computation of these pairs is
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not analytic, it is recommended to compute these derivatives numerically, with, for example,
finite differences:

ζ(ϑ(â+ δâ))− ζ(ϑ(â− δâ))

2δâ
≈

{
∂ωn

∂â
,
∂θn
∂â

}
,

where ϑ(â) indicates the dependence of the random variable and parameter â, δâ is the shock
size and ζ(ϑ) : R → {ωn, θn}Nn=1 is defined in Appendix A.1. Due to the applied finite
difference shocks to â, an additional bias will be introduced. We expect, however, this error to
be of acceptable magnitude.

3.4. Convergence improvements for Monte Carlo simulation with randomized parameters

Under the RAnD framework, the randomness of the model parameters is not modelled
by an AD SDE, but it is enforced “externally” and consequently affects the simulation with
Monte Carlo methods and the convergence. In this section, we discuss how to perform Monte
Carlo sampling and propose an efficient variance reduction technique that will improve the
convergence of the method.

Monte Carlo simulation of the randomized model implies that every simulated path of the
underlying process X(t) will be randomized in a sense that will depend on a realization of ϑ,
θn. Suppose we consider a discretization of some process X(t) from (2.1) with M Monte Carlo
paths given by:

n : xn(t+∆t; θn) = xn(t; θn) +

∫ t+∆t

t

µ̄(s, xn(s); θn)ds+

∫ t+∆t

t

σ̄(s,xn(s); θn)dw̃n(s)

+

∫ t+∆t

t

Jn(s; θn)
TdxP,n(s), (3.13)

with w̃n(s) and xP,n(s) representing the realization of the Brownian motion and Poisson pro-
cess, respectively. Then, depending on the discretization method, the integrals above can
be found explicitly or approximately by either Euler, Milstein or any other higher-order dis-
cretization scheme. Since the randomization of model parameters is time-invariant, this implies
that every discretized Monte Carlo path of (3.13) will be driven by a different realization of
the randomized parameter. Formally, considering a simulation with M paths, every n’th,
n = 1, . . . ,M , path will depend on the n’th sample from the parameter distribution,

The computational time can be reduced by following a similar strategy as in Section 2.3.
We have two possibilities for derivative pricing under the RAnD framework: directly using all
the Monte Carlo paths and evaluate the pricing equation, V1(t0) in (3.14), or we can employ
the idea behind the RAnD method and divide the pricing problem into N sub-problems, where
for each quadrature node {θn}Nn=1, a separate simulation is performed and weighted according
to {ωn}Nn=1 (see V2(t0) in Equation (3.14)),

V1(t0) ≈
e−rT

M

M∑
i=1

Π(xi(T ), T ), V2(t0) ≈
e−rT

M

N∑
n=1

ωn

M∑
i=1

Π(xi(T ;ϑ = θn), T ). (3.14)

The division into sub-problems gives stability to the model; however, the cost is the quadra-
ture error, affecting the overall pricing error.

In Figure 9, the numerical results for the example case discussed in Section 2.3 are presented.
The left panel of Figure 9 confirms that the stability is affected by the randomized volatility
coefficient. In the right panel of Figure 9, we see stability by dividing the problem into N sub-
problems. Although the division process improves the convergence, it will negatively impact
the computational cost (the pricing needs to be performed N times). Finally, a particular
division strategy will also depend on the pricing problem.

3.5. RAnD method for piece-wise constant parameters

The methodology to obtain the randomized ChF can be extended to multiple or piece-wise
parameters. In such a case, the approach could be considered a rough approximation for a
parameter driven by a stochastic process. Using the insight that under the affine models func-
tions Ā(u, τ) and B̄(u; τ) in (2.9) are the solution of the Riccati-type ODEs with nonzero initial

17



0 1 2 3 4 5
nPaths 106

-10

-9

-8

-7

-6

-5

-4
Convergance results for the RAnD BS model

0 1 2 3 4 5
nPaths 106

-7.5

-7

-6.5

-6

-5.5

-5
Convergance results for the RAnD BS model

Figure 9: Convergence results for an increasing number of Monte Carlo paths. Left panel:
impact of randomization on convergence rate. Right panel: RAnD method convergence
with sub-divided pricing.

conditions Ā(u, 0) and B̄(u, 0), for a time-grid τn1
≤ τn2

· · · ≤ τnm
= τ , the model parameters

can be evaluated at each interval determined by T − τi. Piece-wise constant parameters imply
that the characteristic function can be evaluated recursively, i.e. at the first interval from
[0, τn1

), we use the initial conditions B̄(u, 0) = 0 and Ā(u, 0) = 0. When the corresponding
analytic solution is determined (for details see [26], p.521), we obtain two solutions, a1 and c1.
For interval [τ1, τ2), we then assign the initial conditions B̄(u, τ1) = c1 and Ā(u, τ1) = a1. This
procedure will be repeated until the last time step, where the initial values cnm−1 and anm−1

are used to evaluate B̄(u, τnm
) and Ā(u, τnm

).
Piece-wise parameters divided over nm intervals will require separate handling of each

interval. Corollary 3.1 provides the details.

Corollary 3.1 (Piece-wise random parameters). Consider nm independent random variables
ϑ1, . . . , ϑnm

, and a time grid with nm intervals of the time interval [t, T ] with τ = T − t. Each
of the variables corresponds to an interval. Then, the corresponding randomized ChF is given
by:

ϕX(u; t, T ) =

N∑
n1=1

· · ·
N∑

nm=1

ωn1
. . . ωnm

eĀ(u;τ,θn1
,...,θnm )+B̄T(u;τ,θn1

,...,θnm )X(t) + ϵ̄N , (3.15)

under the same assumption as specified in Theorem 2.1.

The representation above gives us an extension for nm independent model parameters. The
summation is over all parameters and their corresponding quadrature points; thus, it is subject
to the so-called curse of dimensionality. Therefore, this expression is not desirable for many
stochastic parameters. However, the representation in (3.15) can be reduced using the sparse
grid approach (see [31, 14]). The significant advantage of such a technique is that the number
of grid points does not grow exponentially with the dimension but only polynomially.

4. Conclusion

In this article, we have introduced the RAnD method for efficient computation of the affine
models with random parameters. The proposed framework is generic and can be applied to
any stochastic model, even outside the class of affine diffusions. As long as the randomizing
random variable gives rise to finite, preferably closed-form, moments, one can price European-
style options efficiently. The heart of the method is formed by a few critical collocation points to
recover the characteristic function. Fast computation of the characteristic function is possible
because the method converges exponentially in the number of expansion terms. We have
shown that the randomization of stochastic models provides a breeze of fresh air to the class of
affine models. Finally, we have applied the RAnD method to the Bates model and shown that
randomization allows for simultaneous calibration to S&P and VIX options- a heavily desired
feature of modern models.
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Appendix A. Additional materials and proofs

Appendix A.1. Moments and optimal collocation pairs: ζ(ϑ) : R → {ωn, θn}Nn=1

This section discusses the mechanism for the construction of orthogonal polynomials. Later,
this methodology is applied to establish the ζ(ϑ) : R → {ωn, θn}Nn=1 that are used in the RAnD
method.
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A sequence of orthogonal polynomials {pi}Ni=0, with deg(pi) = i, is said to be orthogonal
in L2 with respect to PDF fϑ(ϑ) of ϑ, if the following holds,

E [pi(ϑ)pj(ϑ)] =

∫
R
pi(x)pj(x)fϑ(x)dx = δi,jE

[
p2i (ϑ)

]
, i, j = 0, . . . , N, (A.1)

with R the support of ϑ, δi,j the Kronecker delta.
An important property of orthogonal polynomials is their definition in terms of a recurrence

relation, given in the theorem below.

Theorem Appendix A.1 (Recurrence in orthogonal polynomials). For any given den-
sity function fϑ(·), a unique sequence of monic orthogonal polynomials pi(x) exists, with
deg(pi(x)) = i, which can be constructed as follows,

pi+1(x) = (x− αi)pi(x)− βipi−1, i = 0, . . . , N − 1, (A.2)

where p−1(x) ≡ 0, p0(x) ≡ 1 and where αi and βi is the recurrence coefficients,

αi =
E[ϑp2i (ϑ)]
E[p2i (ϑ)]

, for i = 0, . . . , N − 1, βi =
E[p2i (ϑ)]
E[p2i−1(ϑ)]

, for i = 1, . . . , N − 1, (A.3)

with β0 = 0.

Proof. The proof can be found in [9]. ■

Parameters αi and βi are entirely determined in terms of the moments of a random variable
ϑ. For many densities (weight functions in the integration in (A.4)) the three-term recurrence
relation in (A.2) of the corresponding orthogonal polynomials has been determined. In a
scenario when the probability density function fϑ(·) is not known explicitly, or its evaluation is
computationally expensive. In such circumstances, it is desirable to express αi and βi in (A.3)
in terms of the moments of ϑ [12]. Let us consider the monomials mi(ϑ) = ϑi, and define µi,j

as follows,

µi,j = E [mi(ϑ)mj(ϑ)] =

∫
R
xi+jfϑ(x)dx = E[ϑi+j ], i, j = 0, . . . , N. (A.4)

From all moments µi,j we construct the so-called Gram matrix M = {µi,j}Ni,j=0, which is

symmetric and contains all moments {1,E[ϑ1], . . . ,E[ϑ2N ]}. Since matrix M is, by definition,
positive definite [12], we decompose M = RTR, by the Cholesky decomposition of M.

The following step relates the Cholesky upper triangular matrix R to the orthogonal poly-
nomials. This relationship has been established in [12] and is given by,

αj =
rj,j+1

rj,j
− rj−1,j

rj−1,j−1
, j = 1, . . . , N, and βj =

(
rj+1,j+1

rj,j

)2

, j = 1, . . . , N − 1, (A.5)

with r0,0 = 1 and r0,1 = 0 and where ri,j is the (i, j)-th element of matrix R. This relation
gives us the manifestations for αj and βj when the matrix of moments has been computed.

The recurrence coefficients αi and βi are often called the Darboux coefficients. The choice
of these coefficients guarantees that the generated polynomials pn(ϑ) are orthogonal.

The next step is to relate the coefficients αi and βi to the zeros of the orthogonal polynomials
pn(ϑ), n = 0, . . . , N , utilizing the so-called the eigenvalue method, presented in the theorem
below.

Theorem Appendix A.2 (Eigenvalue method). The zeros θn, n = 1, . . . , N , of the orthog-
onal polynomial pN (ϑ) are the eigenvalues of the symmetric tridiagonal matrix,

Ĵ :=


α1

√
β1 0 0 0√

β1 α2

√
β2 0 0

. . .
. . .

. . .

0 0
√
βN−2 αN−1

√
βN−1

0 0 0
√
βN−1 αN

 , (A.6)

i.e., θ = (θ1, . . . , θN )T is a vector of eigenvalues satisfying Ĵv = θiv with i = 1, . . . , N for any
real vector v, with αi and βi being the coefficients of the three-term recurrence relation (A.2).
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Proof. The proof can be found in [12]. ■

Based on the coefficients αi and βi, the collocation points θn are the eigenvalues of matrix
(A.6). Eigenvalue calculation for a tridiagonal matrix in Theorem Appendix A.2 is performed
by, e.g. the Lanczos algorithm.

The final step is to determine the corresponding weights, ωn. This can be done based on
the Theorem Appendix A.3 below,

Theorem Appendix A.3 (Optimal weights ωn). Let v(n) := [v
(n)
1 , . . . , v

(i)
N ]T be an eigen-

vector of Ĵ in (A.6) for the eigenvalue θn, Ĵv
(n) = θnv

(n). Then, the weights ωn are given

by: ωn = (v
(n)
1 )2, n = 1, . . . , N.

Proof. Proof can be found in [5] (p.179). ■

The pseudo algorithm to compute the pairs {ωn, θn}Nn=1 is provided in Algorithm 1 below.

Algorithm 1: Calculation of optimal quadrature weights and nodes {ωn, θn}Nn=1, The
accompanying Python and MATLAB codes can be found at https://github.com/

LechGrzelak/Randomization.
// Construction of the matrix M with size (N + 1×N + 1) :
for i = 1 . . . N + 1 do

for j = 1 . . . N + 1 do
M [i, j] = E[ϑi+j−2]

// Calculate upper diagonal Cholesky matrix from M :
Result: M = RTR
// Find α and β from matrix R, according to Equation (A.5)
α[1] = R[1, 2]/R[1, 1]
β[1] = (R[2, 2]/R[1, 1])2

for i = 2 : N − 1 do
α[i] = R[i, i+ 1]/R[i, i]−R[i− 1, i]/R[i− 1, i− 1];
β[i] = (R[i+ 1, i+ 1]/R[i, i])2;

α[N ] = R[N,N + 1]/R[N,N ]−R[N − 1, N ]/R[N − 1, N − 1];

// Construction of the matrix Ĵ , according to Equation (A.6):
J = zeros(N,N), J [1, 1] = α[1], J [1, 2] =

√
β(1)

for i = 2 . . . N − 1 do

J [i, i− 1] =
√

β[i− 1], J [i, i] = α[i], J [i, i+ 1] =
√

β[i]

J [N,N ] = α[N ], J [N,N − 1] =
√

β[N − 1];
// Find the collocation points θn and the corresponding weights ωn

θ is computed from x = EigenV alues(J)
ω is obtained by squaring the first row from eigenvalues vector
Result: {ωn, θn}Nn=1

Appendix A.2. Impact of randomizers on implied volatilities

In this section, we illustrate the impact of randomizers on the implied volatilities under the
Black-Scholes model. In particular we consider σ ∼ Γ(â, b̂) and σ ∼ âχ2(b̂, ĉ). The results are
reported in Figure A.10.

Appendix A.3. ChF for the Bates model

For the Bates model, the complex valued functions C̄(u, τ), ĀH(u, τ) are known explicitly
and are given by:

C̄(u, τ) =
1− e−Dτ

γ2(1− ge−Dτ )
(κ− γρiu−D) ,

ĀH(u, τ) = r(iu− 1)τ +
κv̄τ

γ2
(κ− γρiu−D)− 2κv̄

γ2
log

(
1− ge−Dτ

1− g

)
,

ĀB(u, τ) = ĀH(u, τ)− λiuτ
(
eµJ+

1
2σ

2
J − 1

)
+ λτ

(
eiuµJ− 1

2σ
2
Ju

2

− 1
)
.
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Figure A.10: Implied volatility surface for the RAnD BS model for different randomizers
of σ.

for D =
√
(κ− γρiu)2 + (u2 + iu)γ2 and g =

κ− γρiu−D

κ− γρiu+D
and where τ = T − t.

Appendix A.4. Proof of Lemma 3.1

Using the dynamics of the Bates model in Equation (3.1) and the definition of the VIX (3.5)
we have:

log
S(T )

S(t)
= −λE[eJ − 1](T − t)− 1

2

∫ T

t

v(u)du+

∫ T

t

√
v(u)dW (u) +

∫ T

t

JdXP(u), (A.7)

with Et[e
J ] = eµJ+

1
2σ

2
J and all the model parameters as specified in (3.1). By taking the

expectations, we find,

Et

[
log

S(T )

S(t)

]
= −λ

(
eµJ+

1
2σ

2
J − µJ − 1

)
(T − t)− 1

2

∫ T

t

Et[v(u)]du. (A.8)

The expectation, conditioned on time t, of the CIR process is known analytically and it is
given by:

Et[v(T )] = c̄(t, T )(δ + κ̄(t, T )),

c̄(t, T ) =
1

4κ
γ2(1− e−κ(t−T )), δ =

4κv̄

γ2
, κ̄(t, T ) =

4κv(t)e−κ(T−t)

γ2(1− e−κ(T−t))
. (A.9)

By integration over the expectation in Equation (A.8) and substitution to definition of VIX
in (3.5) we find:

vix2(t, T ) = 1002 × −2

T − t
Et

[
log

S(T )

S(t)

]
= a(t, T )v(t) + b(t, T ) + c, (A.10)

with

a(t, T ) =
1− e−κ(T−t)

κ(T − t)
, b(t, T ) = v̄ (1− a(t, T )) , c = 2λ

(
eµJ+

1
2σ

2
J − µJ − 1

)
.

Since the CIR process v(t)|v(t0), t > 0, follows a scaled, with c̄(t0, t), non-central chi-square
distribution, χ2(δ, κ̄(t0, t)), where δ is the “degrees of freedom” parameter and the noncentrality
parameter is κ̄(t0, t), i.e.,

v(t)|v(t0) ∼ c̄(t0, t)χ
2 (δ, κ̄(t0, t)) , t > t0. (A.11)

Therefore the CDF for VIX is given by:

P [vix(t, T ) ≤ x] = P
[√

a(t, T )v(t) + b(t, T ) + c ≤ x
]

= P
[
v(t) ≤ 1

a(t, T )

(
x2 − b(t, T )− c

)]
= Fv(t)

(
1

a(t, T )

(
x2 − b(t, T )− c

))
.

22



Since the unconditional CDF for v(t) is known explicitly, we have

Fv(t)(x) = Q[v(t) ≤ x] = Q
[
χ2 (δ, κ̄(t0, t)) ≤

x

c̄(t0, t)

]
= Fχ2(δ,κ̄(t0,t))

(
x

c̄(t0, t)

)
, (A.12)

thus finally we have:

Fvix(x) = Fχ2(δ,κ̄(t0,t))

(
x2 − b(t, T )− c

a(t, T )c̄(t0, t)

)
.

By differentiation, the probability density function reads:

fvix(x) :=
d

dx
Fχ2(δ,κ̄(t0,t))

(
x2 − b(t, T )− c

a(t, T )c̄(t0, t)

)
=

2x

a(t, T )c̄(t0, t)
fχ2(δ,κ̄(t0,t))

(
x2 − b(t, T )− c

a(t, T )c̄(t0, t)

)
=: 2α1xfχ2(δ,κ̄(t0,t))

(
α1(x

2 − α2)
)
,

with α1 = 1
a(t,T )c̄(t0,t)

and α2 = b(t, T ) + c.

Having all the ingredients at hand we derive the ChF for vix2(t, T ). By definition we find:

ϕvix2(t,T )(u) = Et0

[
eiu(a(t,T )v(t)+b(t,T )+c)

]
= eiu(b(t,T )+c)Et0

[
eiua(t,T )v(t)

]
= eiu(b(t,T )+c)Mv(t)(iua(t, T )),

where Mv(t)(iua(t, T )) is the moment-generating function of v(t), known explicitly (see [26]
p.314):

Mv(t)(u) = Et0

[
euv(t)

]
=

(
1

1− 2uc̄(t0, t)

) 1
2 δ

exp

(
uc̄(t0, t)κ̄(t0, t)

1− 2uc̄(t0, t)

)
.

Appendix A.5. Implied volatilities for RAnD BS model with uniform randomizer

Table A.5: Maximum implied volatility, IV(·), error computed against Monte Carlo results

with 10 million samples, with K = S0e0.1
√
Tδ, δ = [−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3].

error = maxi
∣∣IV(t0,Ki)− IVref(t0,Ki)

∣∣
σ ∼ U([â, b̂]) N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

T = 1d 0.16 % 0.04 % 0.02 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
T = 1w 0.16 % 0.04 % 0.01 % 0.01 % 0.00 % 0.00 % 0.00 % 0.00 %
T = 2w 0.16 % 0.03 % 0.02 % 0.02 % 0.02 % 0.02 % 0.02 % 0.02 %
T = 1m 0.15 % 0.03 % 0.01 % 0.01 % 0.00 % 0.01 % 0.01 % 0.01 %
T = 3m 0.15 % 0.03 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %
T = 6m 0.15 % 0.03 % 0.01 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
T = 12m 0.15 % 0.03 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 %

Appendix A.6. Impact of randomization on Bates model parameters

The impact of different randomizers on implied volatilities under the Bates model is pre-
sented in Figure A.11 and Figure A.12.
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Figure A.11: Impact of randomized parameters on implied volatilities. Left: randomized
long-term vol, v̄. Right: randomized jump’s size vol, σJ .
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Figure A.12: Impact of randomized parameters on implied volatilities. Left: randomized
speed of mean reversion, κ. Right: randomized jump’s intensity, λ.
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