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@ setting up a framework for variance-covariance matrix estimation with
deep learning models
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@ setting up a framework for variance-covariance matrix estimation with
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solution of the large variance-covariance matrix estimation
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The main aims:

@ setting up a framework for variance-covariance matrix estimation with
deep learning models

@ exploration of deep learning models’ capabilities in variance-covariance
matrix estimation

@ comparison of classical and deep learning-based variance-covariance
matrix estimation techniques

Reasoning:

o Probabilistic deep learning models are promising candidates for
solution of the large variance-covariance matrix estimation
problem

@ A comparison of classical and DL approaches to
variance-covariance matrix estimation for MPT was not yet
covered for the portfolios of stocks and cryptocurrencies.
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Hypotheses and research questions

First Hypothesis:

The strategies utilizing the variance-covariance matrix estimations from the
deep learning methods outperform the strategies based on the classical
variance-covariance matrix estimation methods.

Second Hypothesis:
The strategies based on the variance-covariance matrix estimations from the
probabilistic deep learning models perform better than the strategies based
on the simple LSTM-RNN models.

v
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moving average

@ Naccarato and Pierini (2014), Zakamulin (2015) - BEKK-GARCH model

@ Moura, Santos and Ruiz (2020), Henriques and Ortega (2014), Zakamulin
(2015) - dynamic conditional correlation (DCC) by Engle (2002)

@ Lam (2020), Frahm and Memmel (2010) - linear and non-linear shrinkage
estimators

@ Fiszeder and Orzeszko (2021) - machine learning approach based on support
vector regression
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Methodology

Mean-Variance Optimization
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Methodology. Mean-Variance Optimization

@ Shorting assets is not allowed and long-only portfolios are considered.
min 1 >3 wiRiwjRjoj
max 7y witk (1)

s.t. { Z?:l Wi

Vief1,. .mwi >0

@ R is a vector of multivariate returns

@ wj is share of asset i in the portfolio

@ 4 is a vector of expected returns

@ ojj is a covariance between assets i and j
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Methodology

Classical Variance-Covariance Matrix
Estimators
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Methodology. Classical Variance-Covariance Matrix

Estimators

R I _ _
Y:=——> (RF™"—R)(RT™-R)) (2)

m=0

@ RI™™ denotes the returns of asset i in the period [t — k, t]

e R; is the average of returns

@ k is the window parameter controlling how many past observations are
considered in the calculations

Semi-Covariance Estimator

. 1E " pt—m
Zt = ; mgo I’)"Iln(l?;‘L — B,O) * rnln(l?}L - B) 0) (3)

@ B denotes the returns threshold (2% in this study)

Maciej Wysocki and Pawet Sakowski QFRG alnvestment Portfolio Optimization Based on | 10th October 2022



Methodology. Classical Variance-Covariance Matrix

Estimators

Exponentially Weighted Variance-Covariance Matrix
Yo = ALe1+ (1= A)(Re — p)(Re — ) (4)

@ )\ is a decay rate (set to 0.94)
@ 1 is a vector of the expected returns

Shrinkage Estimators

Y. =0F+(1-6)S,0<6<1 (5)

@ J is a shrinkage coefficient
@ F is a highly structured estimator called the shrinkage target

@ S is an unstructured sample variance-covariance estimator
Used variants: Constant Variance Shrinkage, Single Factor Shrinkage,
Constant Correlation Shrinkage, Oracle Approximating Estimator.
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Methodology

Long Short-Term Memory Neural
Networks
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Methodology. Long Short-Term Memory Neural Network |

Figure 1. Architecture of a LSTM unit
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Source: Image by Marco Del Pra downloaded from: https://towardsdatascience.com/time-series-
forecasting-with-deep-learning-and-attention-mechanism-2d001fc871fc
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Methodology. Long Short-Term Memory Neural Network Il

The LSTM cell architecture is given by the following equations:

fi = o(Wrhe—1 + Urxe + by)
iy = o(Wihe—1 + Uix¢ + bj)
bt = ol Wghi—1 + Ugx: + bg)
it =it ® 2t

¢t = o(frce—1 +it) (6)
or = o(xt Uy + h—1 W, + by)

hy = tanh(ct) ® oy

)’/\t = Vh;

We, Wi, We, Wo, Ur, U, Ug, Uy, V' are appropriate weight matrices of adequately
forget gate (f), input gate (i), cell state (g), output gate (o) and output vector
br, bi, bg, b, are biases of each gate

h; is the hidden state, x; is the input to the LSTM unit, ¢ is the cell state

o is the sigmoid activation function

symbol ® denotes the Hadamard product
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Methodology

Probabilistic Autoregressive Recurrent
Neural Networks
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Methodology. Probabilistic Autoregressive RNNs. DeepVAR

@ DeepVAR (Salinas et. al, 2020) is a multivariate probabilistic DL
model, which estimates the conditional distribution of time series given
their preceding values:

P(ze.7|z1:6—1, X1.7)
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@ z is a matrix of time series, [1,t — 1] and [t, T] are respectively
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@ z is a matrix of time series, [1,t — 1] and [t, T] are respectively
conditioning and prediction ranges, and x is a matrix of covariates.

@ The model distribution is expressed as a product of likelihood functions
I(z]0), where @ is vector of parameters, which depends on the outputs
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Methodology. Probabilistic Autoregressive RNNs. DeepVAR

DeepVAR (Salinas et. al, 2020) is a multivariate probabilistic DL
model, which estimates the conditional distribution of time series given
their preceding values:

P(zt.7|z1:t-1, x1:7)
z is a matrix of time series, [1,t — 1] and [t, T] are respectively
conditioning and prediction ranges, and x is a matrix of covariates.
@ The model distribution is expressed as a product of likelihood functions
I(z]0), where @ is vector of parameters, which depends on the outputs
of the autoregressive RNN.
DeepVAR is both autoregressive and recurrent, as during the training
process each time stamp is estimated using lagged observations and
the previous output of the NN as the inputs.
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Methodology. Probabilistic Autoregressive RNNs. DeepVAR

@ DeepVAR (Salinas et. al, 2020) is a multivariate probabilistic DL
model, which estimates the conditional distribution of time series given
their preceding values:

P(zt.7|z1:t-1, x1:7)

@ z is a matrix of time series, [1,t — 1] and [t, T] are respectively
conditioning and prediction ranges, and x is a matrix of covariates.

@ The model distribution is expressed as a product of likelihood functions
I(z]0), where @ is vector of parameters, which depends on the outputs
of the autoregressive RNN.

@ DeepVAR is both autoregressive and recurrent, as during the training
process each time stamp is estimated using lagged observations and
the previous output of the NN as the inputs.

@ We used the Gaussian likelihood function:

Halp,o) = e (7)
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Methodology. Probabilistic Autoregressive RNNs. GPVAR

@ GPVAR is a multivariate probabilistic DL model estimating the joint
conditional distribution.
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Methodology. Probabilistic Autoregressive RNNs. GPVAR

@ GPVAR is a multivariate probabilistic DL model estimating the joint
conditional distribution.

@ The joint distribution is parametrized using a Gaussian copula process,
which parameters depend on the model state:

hi+ = ¢(hit—1,2it—1) (8)
P(zilhe) = P ([A(210), Fo(z2.)s s Fvlane)] T i) E(he))

@ h; is state of the model with transition dynamic ¢

@ 1 and ¥ are parameters of the Gaussian distribution

e f; are functions of form: 1o F; combining the inverse of the
standard normal distribution CDF and empirical marginal distribution
of i-th input series
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Methodology

Forecasting Variance-Covariance
Matrix with Deep Learning Methods
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Methodology. Forecasting Variance-Covariance Matrix with

Deep Learning Methods

In general, any variance-covariance matrix is symmetric and positive -
semidefinite:

y=xT
Veern 1 xTEx >0 )
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Methodology. Forecasting Variance-Covariance Matrix with

Deep Learning Methods

In general, any variance-covariance matrix is symmetric and positive -
semidefinite:

y=xT
Veern 1 xTEx >0 )

Unfortunately, a variance-covariance matrix created as a combination of
forecasts of its entrances is not guaranteed to meet these conditions.

How to assure that the resulting matrix is symmetric and positive -
semidefinite?
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Methodology. Forecasting Variance-Covariance Matrix with

Deep Learning Methods

In general, any variance-covariance matrix is symmetric and positive -
semidefinite:

y=xT
Veern 1 xTEx >0 )

Unfortunately, a variance-covariance matrix created as a combination of
forecasts of its entrances is not guaranteed to meet these conditions.

How to assure that the resulting matrix is symmetric and positive -
semidefinite?

We used Cholesky decomposition.
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Methodology. Forecasting Variance-Covariance Matrix with
Deep Learning Methods

Deep learning-based variance-covariance matrix forecasting
methodology

© For each available timestamp calculate the historical N x N

variance-covariance matrix X; over the selected window w (where N is
the number of assets).
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Methodology. Forecasting Variance-Covariance Matrix with
Deep Learning Methods

Deep learning-based variance-covariance matrix forecasting
methodology

© For each available timestamp calculate the historical N x N
variance-covariance matrix ¥; over the selected window w (where N is
the number of assets).

@ Apply Cholesky decomposition to each of the obtained
variance-covariance matrices > ; = X X;.

© Construct separate time series x,” for each of the entrances of the
decomposed matrices resulting in W series.

@ Forecast the obtained series of Cholesky factors' entrances using a
selected deep learning method trained on the available observations.

© Construct the Cholesky factors X7, from the forecasted series and
then reconstruct the variance-covariance matrix 71, = X741, X7, .-

Maciej Wysocki and Pawet Sakowski QFRG alnvestment Portfolio Optimization Based on | 10th October 2022 23/36



Portfolio Construction

@ All portfolios were optimized using the minimum variance criterion.
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Portfolio Construction

o All portfolios were optimized using the minimum variance criterion.

@ The portfolio optimization steps were done on every rebalancing day
(every 30, 60, 90 and 120 days).

@ Transactional costs were considered during the optimization process.

A single portfolio optimization process:

© Gather the available prices of assets and calculate the expected returns
estimated as the mean historical returns.
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Portfolio Construction

o All portfolios were optimized using the minimum variance criterion.

@ The portfolio optimization steps were done on every rebalancing day
(every 30, 60, 90 and 120 days).

@ Transactional costs were considered during the optimization process.

A single portfolio optimization process:

© Gather the available prices of assets and calculate the expected returns
estimated as the mean historical returns.

@ Estimate the variance-covariance matrix using the selected method and
optimize weights.

© Calculate discrete portfolio allocation from the optimal weights,
allocate the available capital to update the portfolio structure by
buying and selling appropriate assets.
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o Daily close prices of cryptocurrencies and US stocks.
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o Daily close prices of cryptocurrencies and US stocks.

@ Missing (weekends) stock quotes for these days were filled with the last
available price.
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o Daily close prices of cryptocurrencies and US stocks.

@ Missing (weekends) stock quotes for these days were filled with the last
available price.

@ Around 1000 stocks listed on the New York Stock Exchange and
around 500 cryptocurrencies with the highest market capitalization.

o Filtered data to select 10 stocks and 10 cryptocurrencies with the
highest market capitalization at a given date were selected and passed
to the portfolio optimization.
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o Daily close prices of cryptocurrencies and US stocks.

@ Missing (weekends) stock quotes for these days were filled with the last
available price.

@ Around 1000 stocks listed on the New York Stock Exchange and
around 500 cryptocurrencies with the highest market capitalization.

o Filtered data to select 10 stocks and 10 cryptocurrencies with the
highest market capitalization at a given date were selected and passed
to the portfolio optimization.

@ Over the whole study horizon, this method selected 82 unique assets,
including 64 cryptocurrencies and 18 stocks.
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Parameters

Parameters Shared by All Strategies

Parameter

Options or Range

Window
Rebalancing Period
Optimization Criterion

30, 60, 90, 120
30, 60, 90, 120
minimal variance

Strategies Utilizing LSTM Forecasts

Parameter Options or Range
Units 5, 10, 15, 20, [5, 5], [5, 10], [10, 5], [10, 10], [15, 15], [20, 20]
Batch Size 8, 16

Sequences Length 15, 20

Strategies Utilizing Probailistic Deep Learning Forecasts

Parameter Options or Range
Units 5, 10, 15, 20
Scaling True, False

Low-Rank True, False
Copula True, False
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Results. 30-days window

Figure 2. Information ratio and annualized returns of the investment strategies based on a

30-days window.
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Note: Performance statistics were aggregated across all parameters for each variance-covariance estimation method and
rebalancing period. Number of strategies in each rebalancing periods respectively was: GPVAR - 23, 32, 32, 31; VAR - 25, 32, 32,

30; LSTM - 25, 40, 39, 40; classical - 8, 8, 8, 8.
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Results. 60-days window

Figure 3. Information ratio and annualized returns of the investment strategies based on a

60-days window
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Note: Performance statistics were aggregated across all parameters for each variance-covariance estimation method and
rebalancing period. Number of strategies in each rebalancing periods respectively was: GPVAR - 32, 32, 32, 32; VAR - 32, 32, 32,

32; LSTM - 38, 40, 40, 40; classical - 8, 8, 8, 8.
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Results. 90-days window

Figure 4. Information ratio and annualized returns of the investment strategies based on a
90-days window.
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Note: Performance statistics were aggregated across all parameters for each variance-covariance estimation method and
rebalancing period. Number of strategies in each rebalancing periods respectively was: GPVAR - 32, 32, 32, 32; VAR - 32, 32, 32,

32; LSTM - 30, 40, 40, 24; classical - 8, 8, 8, 8.
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Results. 120-days window

Figure 5. Information ratio and annualized returns of the investment strategies based on a

120-days window.
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Note: Performance statistics were aggregated across all parameters for each variance-covariance estimation method and
rebalancing period. Number of strategies in each rebalancing periods respectively was: GPVAR - 32, 32, 32, 32; VAR - 29, 32, 32,

32; LSTM - 40, 40, 40, 34; classical - 8, 8, 8, 8.
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Research Hypotheses Verification

@ The first research hypothesis concerning the performance of the deep
learning-based strategies was partially rejected, as the performance of
such strategies strongly depended on window and rebalancing
parameters.
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Research Hypotheses Verification

@ The first research hypothesis concerning the performance of the deep
learning-based strategies was partially rejected, as the performance of
such strategies strongly depended on window and rebalancing
parameters.

@ Nevertheless, in most cases the strategies utilizing the variance -
covariance matrices from the deep learning models were significantly
better than the strategies exploiting the classical variance - covariance
estimation methods.
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Research Hypotheses Verification

@ The first research hypothesis concerning the performance of the deep
learning-based strategies was partially rejected, as the performance of
such strategies strongly depended on window and rebalancing
parameters.

@ Nevertheless, in most cases the strategies utilizing the variance -
covariance matrices from the deep learning models were significantly
better than the strategies exploiting the classical variance - covariance
estimation methods.

@ The second research hypothesis of this study was rejected, as the
strategies employing the probabilistic deep learning models did not
perform any better than the strategies with variance-covariance matrix
estimation from the LSTM-RNN models.

Maciej Wysocki and Pawet Sakowski QFRG alnvestment Portfolio Optimization Based on | 10th October 2022 32/36



Conclusions

Based on our framework we were produced strategies that provided positive
returns and were profitable over the backtests.

Performance of the strategies strongly dependeds on length of
observation window and frequency of rebalancing.

A higher number of observations used in the variance-covariance
matrix estimation translated into better results, especially in case of deep
learning-based strategies.

A less frequent portfolio re-optimizations generally performed better,
hence this framework could be utilized for a long-term portfolio management.
In most of the considered combinations of parameters, strategies based on
matrices forecasted with LSTM-RNN outperformed the others in terms of the
examined performance metrics.

Although DeepVAR and GPVAR typically achieved slightly worse
results, both models were very stable across their hyperparameters,
especially for longer observation windows.

The probabilistic models tend to be more robust to hyperparameters
changes and they could provide good results without a lengthy optimization
process.
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Research extensions

@ Use larger portfolios with longer history.

@ Compare the deep learning-based approach with the dynamic
financial econometrics models such as the multivariate GARCH.

@ Try other optimization criterion for the Markowitz framework such as
the Sharpe ratio optimization or maximization of returns for a given
risk threshold.
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Thank you for your attention!
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