

The modeling of earnings per share of Polish companies for post-financial crisis period using random walk and ARIMA models*

Wojciech Kuryłek Ph.D. – University of Warsaw, Faculty of Management

*This project is XXX funded

Project

- Is focused on the forecasting of EPS firms listed on the Warsaw Stock Exchange
- Only a small fraction (20%) of companies is covered by financial analysts in Poland, contrary to the situation in US, so the impotence of time series forecasting matters
- The most recent data coming from a period of relative earning stability i.e. ranging from the last financial crisis 2008-2009 to the pandemia shock of 2020
- Instead of mean absolute percentage error (MAPE), a modification of this measure is used (MAAPE)

The history of research

- 1960's the beginning of EPS forecasting literature and comparison of mechanical forecasts with security analysts' predictions [Cragg and Malkiel (1968)]
- □ 1970 development of ARIMA time series models [Box and Jenkins]
- 1972-1977 development the premier models of ARIMA type for EPS [Ball and Watts (1972), Watts (1975), Griffin (1977), Foster (1977), Brown and Rozeff (1977)]
- 1979 1984 Building a consensus that ARIMA-type models performed the best [Lorek (1979), Bathke and Lorek (1984)]
- 1987 the groundbreaking work that forecasts provided by financial analysts were better than those made by time series models [Brown et al. (1987)]
- 2020 questioning the superiority of analysts over time series [Pagach and Warr (2020)]

The problems with existing research

- The literature is **mostly focused on the US** with few exceptions [Bao (1996), Grigaliūniene (2013)]
- All the existing research is limited to the time period ending prior to the 2009 year
- The most popular **MAPE** error metric that is related to the **explosion** of this measure when its denominator is very small i.e. when **actual earnings are close to zero**, which is often a case

III. Hypothesis and results

Hypothesis

are technically complex ARIMA models more appropriate for EPS forecasting of WSE companies, than naive random walk models?"

Research results

- The best model, is the seasonal random walk (SRW) model across all examined quarters, which describes quite well the behavior of the Polish market compared to other models. Hence, conclusions drawn for the US might not hold for emerging economies because of the much simpler behavior of these markets.
- Medians of errors of the firm-specific (BJ) model are statistically not different from the best seasonal random walk (SRW) model for the most of analyzed periods

- Data source is **EquityRT**, which is a product of the Turkish company **RASYONET**
- **267** companies listed on **Warsaw Stock Exchange**
- Excluded companies with splits/reverse splits because such operations influence substantially EPS behavior
- **Quarterly** data
- □ Q1 2010 Q4 2018 (36 quarters) are used for the estimation of various models
- Q1 2019 Q4 2019 (4 quarters) are used as hold-out validation sample for testing forecast accuracy

NUERSITY OF MARSON

V. Methodology

TESTED MODELS

- The **naive** models:
 - **The random walk model (RW)**:

$$E_{t-1}(Q_t) = Q_{t-1}$$

The random walk model with drift (RWD):

$$E_{t-1}(Q_t) = \delta + Q_{t-1}$$

The seasonal random walk model (SRW):

$$E_{t-1}(Q_t) = Q_{t-4}$$

The seasonal random walk model with drift (SRWD):

$$E_{t-1}(Q_t) = \delta + Q_{t-4}$$

V. Methodology

TESTED MODELS

- The **SARIMA** models:
 - $\varphi(B)(1-B)^d \Phi(B^S)(1-B)^D Q_t = \theta(B) \Theta(B^S) \varepsilon_t + \theta_0$

where $BQ_t = Q_{t-1}$ and $B^S Q_t = Q_{t-4}$ and $\varphi(B)$ and $\varphi(B^S)$ are polynomials

- The Griffin-Watts (GW) model is the SARIMA of order $(0,1,1) \times (0,1,1)$:
 - $E_{t-1}(Q_t) = Q_{t-1} + (Q_{t-4} Q_{t-5}) \theta_1 \varepsilon_{t-1} \theta_1 \varepsilon_{t-4} \theta_1 \theta_1 \varepsilon_{t-5}$ **The Foster (F) model** is the SARIMA of order (1,0,0) × (0,1,0):

 $E_{t-1}(Q_t) = Q_{t-4} + \varphi_1(Q_{t-1} - Q_{t-5}) + \theta_0$

The Griffin-Watts (GW) model is the SARIMA of order $(0,1,1) \times (0,1,1)$:

$$E_{t-1}(Q_t) = Q_{t-4} + \varphi_1(Q_{t-1} - Q_{t-5}) - \Theta_1 \varepsilon_{t-4}$$

The firm-specific Box-Jenkins (BJ) model:

parameters (p,d,q)×(P,D,Q), as well as the constant term θ_0 , are chosen individually for every company

TACILITY OF MANAGEN

V. Methodology

ERROR METRIC

An absolute percentage error (APE) of the forecasts for an i-th individual company in the j-th quarter of 2019 is defined as:

$$APE_j^i = \left| \frac{A_j^i - F_j^i}{A_j^i} \right|$$

but APE has a significant disadvantage: it produces infinite or undefined values when the actual values are zero or close to zero, which is a common occurrence in the forecasting of earnings

An arctangent absolute percentage error, which is a novel approach in the literature:

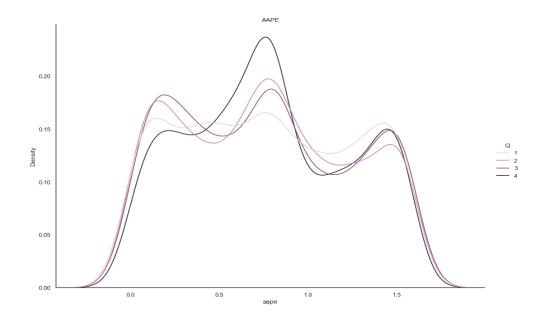
$$AAPE_{j}^{i} = \arctan\left(\left|\frac{A_{j}^{i}-F_{j}^{i}}{A_{j}^{i}}\right|\right)$$

The mean arctangent absolute percentage error: $MAAPE^{i} = \frac{1}{4}\sum_{j=1}^{4}AAPE_{j}^{i}$

V. Methodology

STASTICAL TESTS

The Kruskal-Wallis one-way H-test [Corder and Foreman (2009)]
- a nonparametric test that avoids difficulties concerning the potential normality of the errors:


 H_o : medians of AAPEs of all 8 models are the same

❑ The Wilcoxon two-sided test [Wilcoxon (1945)] – a nonparametric test for all model paires:

 H_o : medians of AAPEs of a pair of models are the same

The kernel density estimators of arctangent absolute percentage errors for forecasted quarters

□ Surprisingly, forecast errors don't increase with forecast horizons

Summary statistics on forecast terrors and Kruskal-Wallis test:

			Quarters								
		Q1	Q1 Rank	Q2	Q2 Rank	Q3	Q3 Rank	Q4	Q4 Rank	MAAPE	Rank
		MAAPE		MAAPE		MAAPE		MAAPE			
	RW	0,89	5,21	0,80	4,68	0,83	5,01	0,74	3,97	0,81	4,72
	RWD	0,92	5,81	0,84	5,26	0,88	5,59	0,79	4,96	0,85	5,40
	SRW	0,66	3,69	0,70	3,98	0,65	3,74	0,74	3,97	0,69	3,85
_	SRWD	0,70	4,03	0,73	4,35	0,73	4,25	0,80	4,67	0,74	4,33
del	GW	0,78	4,51	0,80	4,81	0,77	4,52	0,82	4,84	0,79	4,67
model	F	0,77	4,38	0,75	4,49	0,75	4,35	0,80	4,75	0,77	4,49
	BR	0,75	4,16	0,74	4,24	0,71	4,14	0,80	4,62	0,75	4,29
	BJ	0,71	4,20	0,69	4,19	0,74	4,40	0,73	4,23	0,72	4,25
	H statistics		63,92		19,79		38,18		10,79		36,56
	H pvalue		0,00		0,01		0,00		0,15		0,00

- SRW model performs the best having the lowest rank in respective quarters as well as for all quarters
- ❑ The Kruskal-Wallis test shows that null hypothesis, that median of arctangent absolute percentage errors (AAPEs) of all 8 models are statically the same*, can be rejected in all cases except 4th quarter

* - at 0.05 statistically significance level

P-values of paired Wilcoxon test for forecast errors in Q1 2019

model	RWD	SRW	SRWD	GW	F	BR	BJ	_	ן
RW	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		Only BJ model
RWD		0,0000	0,0000	0,0000	0,0000	0,0000	0,0000		is not
SRW			0,0218	0,0001	0,000	0,0005	0,0487		statistically
SRWD				0,0052	0,0129	0,0887	0,5389		significantly
GW					0,4606	0,0609	0,0240		different than
\mathbf{F}						0,7939	0,1090		SRW model
BR							0,1573	_	SKW model

P-values of paired Wilcoxon test for forecast errors in Q2 2019

Only **BR**, **BJ** models are not statistically significantly different than **SRW** model

model	RWD	SRW	SRWD	GW	F	BR	BJ
RW	0,0000	0,0004	0,0210	0,3844	0,0412	0,0066	0,0004
RWD		0,0000	0,0003	0,0541	0,0012	0,0001	0,0000
SRW			0,0036	0,0002	0,0001	0,5705	0,9455
SRWD				0,0215	0,2108	0,9248	0,2197
GW					0,0763	0,0010	0,0007
F						0,4492	0,0856
BR							0,4630

P-values of paired Wilcoxon test for forecast errors in Q3 2019

model	RWD	SRW	SRWD	GW	F	BR	BJ
RW	0,0000	0,0000	0,0001	0,0028	0,0001	0,0000	0,0003
RWD		0,0000	0,0000	0,0001	0,0000	0,0000	0,0000
SRW			0,0001	0,0020	0,000	0,1113	0,0005
SRWD				0,1770	0,2032	0,2569	0,5654
GW					0,1947	0,0441	0,6852
F						0,1285	0,9419
BR							0,2883

P-values of paired Wilcoxon test for forecast errors in Q4 2019

model	RWD	SRW	SRWD	GW	F	BR	BJ
RW	0,0000	0,0000	0,0000	0,0011	0,0000	0,0213	0,7377
RWD		0,0000	0,4202	0,1339	0,8936	0,4939	0,0785
SRW			0,0000	0,0011	0,0000	0,0213	0,7377
SRWD				0,1578	0,6280	0,8037	0,0281
GW					0,2343	0,0502	0,0045
F						0,8973	0,0196
BR							0,0547

* - at 0.05 statistically significance level

P-values of paired Wilcoxon test for forecast errors for all quarters

Only BJ model
is not
statistically
significantly
different than
SRW model

model	RWD	SRW	SRWD	GW	F	BR	BJ
RW	0,0000	0,0000	0,0000	0,0163	0,0003	0,0000	0,0000
RWD		0,0000	0,0000	0,0002	0,0000	0,0000	0,0000
SRW			0.0001	0.0000	0.0000	0,0042	0.0930
SRWD				0,0066	0,0183	0,7726	0,2826
GW					0,0984	0,0008	0,0007
F						0,0282	0,0131
BR							0,3392

VI. Roboustness check

The models are estimated using expanding window approach i.e. the sample Q1 2010 – Q4 2017 is used for their estimation and Q1 2018 – Q4 2018 for their testing. Then, the same procedure is applied taking the year 2017 to validate the results.

		201	17	20	18	2019	
		MAAPE	Rank	MAAPE	Rank	MAAPE	Rank
	RW	0,83	4,78	0,86	4,97	0,81	4,72
	RWD	0,85	5,42	0,88	5,60	0,85	5,40
	SRW	0,69	3,86	0,71	3,81	0,69	3,85
	SRWD	0,72	4,29	0,76	4,27	0,74	4,33
model	GW	0,79	4,75	0,80	4,62	0,79	4,67
mo	F	0,75	4,45	0,78	4,41	0,77	4,49
	BR	0,74	4,24	0,75	4,19	0,75	4,29
	BJ	0,72	4,21	0,73	4,14	0,72	4,25
	H statistics		32,07		40,28		36,56
	H pvalue		0,00		0,00		0,00

SRW model is characterized by the lowest rank i.e. gives the best results not only in 2019, but also in 2018 and 2017

P-values of paired Wilcoxon test of forecast errors for all quarters 2017-2019 and SRW model

year	model	RWD	SRWD	GW	F	BR	BJ
2017	SRW	0,0000	0,0013	0,0000	0,0000	0,0007	0,0233
2018	SRW	0,0000	0,0000	0,0000	0,0000	0,0488	0,1686
2019	SRW	0,0000	0,0001	0,0000	0,0000	0,0042	0,0930

Only the errors of **SRW** and **BJ** model are statistically different in 2018 and 2019

* - at 0.05 statistically significance level

VII. Conclusions

- □ Forecast errors don't increase with forecast horizons, as one would expect
- □ The best model, with the lowest rank, is the seasonal random walk (SRW) model across all quarters, which describes quite well the behavior of the Polish market compared to other models
- □ The medians of errors of the analyzed models differ statistically significantly in almost all quarters
- Medians of errors of the firm-specific (BJ) model are statistically not different from the best seasonal random walk (SRW) model for the most of analyzed periods

VII. Conclusions

- □ The superiority of the seasonal random walk model (SRW) implies that the underlying **EPS generating process exhibits neither autoregressive nor moving average parts ant there is no drift.**
- □ The horizontal performance of the stock market index WIG during the analyzed period implies the absence of a trend.
- □ In the context of emerging markets, the absence of moving average part is consistent with the fact that a lower fraction of companies publishes the forecasts of their earnings compared to developed markets, and hence not for so many companie past forecast errors result in the correction of the performance of future earnings.
- The non-existence of autoregressive part may in turn be related to the dominance of seasonal component relative to past EPS behavior, which might imply that the emerging market companies are more seasonal than those operating on the developed markets.