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Motivation |

The main aims:

@ exploration of deep learning possibilities in algorithmic investment
strategies (AIS),

@ analysis of signals from LSTM model in algorithmic investment
strategies on different frequencies and different asset classes
(equity indices and cryptocurrencies),

@ designing the proper architecture (initial hyperparameters tuning) of
the LSTM model and testing the performance of AIS with
comparison to the traditional Buy&Hold model (B&H).
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Motivation Il

@ None of the previous works covered the topic of the performance of
signals from the LSTM model in AIS with simultaneous focus on
architecture of LSTM tested on various frequencies and various
asset classes with rolling window approach enhanced with additional
sensitivity analysis at the end.

@ Although each year researchers publish thousands of papers devoted to
testing numerous alternative approaches employed in AlS, the results
of these studies include numerous drawbacks and mistakes which in
practice makes it impossible to use their findings in real trading.

@ Therefore, the chase for the efficient algorithmic investment
strategies still continues.
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Hypotheses and research questions

First Hypothesis:

The signals from LSTM model employed in AIS are more efficient than
Buy&Hold approach regardless of asset class tested.

Second Hypothesis:

The signals from LSTM model employed in AlIS are more efficient than
Buy&Hold approach regardless of data frequency tested.

| A\,

Third Hypothesis:

The signals from LSTM model employed in AlS are more efficient in case of
BTCUSD than in case of S&P500 index.

| A\

Fourth Hypothesis:

The robustness of tested models to various hyperparameters does not
depend on asset class tested.

A\
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Software, Libraries, Hardware, Time

@ The results for LSTM model were obtained using R 4.1.0 along with
Python 3.7.10

@ Deep learning libraries used for design, training and testing the network
are Keras 2.4.0 and TensorFlow 2.5.0.

@ The rest of the calculations, as well as graphs and tables were done
using only R and RStudio environment.

@ Computer specification: AMD Ryzen 7 3700X 3,6GHz, 16GB RAM,
NVIDIA GeForce RTX 2060 Super with 270 tensor cores.

@ One full training (number of rolling windows x 40 epochs) lasted
around:

20 minutes on 1d frequency,

60 minutes on 1h frequency,

180 minutes on 15m frequency for S&P500 data,

80/240/720 minutes for BTC data
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Literature review

@ Hochreiter & Schmidhuber (1997) - the first introduction of LSTM. By introducing
Constant Error Carousel (CEC) units, LSTM deals with the exploding and vanishing
gradient problems. The initial version of the LSTM block included cells, input, and output
gates.

@ Gers & Schmidhuber (1999) introduced the forget gate (also called “keep gate”) into
LSTM architecture, enabling the LSTM to reset its own state.

@ Gers et al. (2000) added peephole connections (connections from the cell to the gates)
into the architecture. Additionally, the output activation function was omitted

@ Chung et al. (2014) put forward a simplified variant called Gated Recurrent Unit (GRU).

@ Chen et al. (2015) implemented LSTM model to predict the next day returns for China
stocks.

@ Zhang et al. (2019) presented AT-LSTM model which is combination of LSTM and
Attention based model and provided results for three index datasets: Russell 2000, DJIA
and NASDAQ.

@ Kijewski and Slepaczuk (2020) compared the performance of classical techniques with
LSTM model for S&P500 index on daily frequency for the last 20 years and showed that
LSTM model results are not robust to initial hyperparameters assumptions.
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Methodology

Terminology and Metrics
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Methodology. Terminology and Metrics

@ Main model used in this work is based on Long Short-Term Memory
network which is a type deep neural networks (DNN).

@ Custom loss function was created as the network performance metric
and used during the training process.

@ Strategy performance metrics - equity line and strategy specific
performance metrics.

@ Sensitivity analysis to show how changes in network hyperparameters
and architecture affect the results.

o Combined strategies (frequencies and assets).
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Methodology

LSTM model
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Methodology. L

LSTM networks are a type or recurrent neural networks (RNN) that can
keep track of long term dependencies in data, allowing to partially solve
vanishing gradient problem typical for classic RNNs. It's widely used to
model sequential data such as text, speech and time series. LSTM units are
composed of memory cells, with each cell having three types of gates (input
gate, output gate and forget gate). These gates use tanh and sigmoid
functions to regulate the flow of information through the cell, deciding how
much and which information should be stored in long term state, passed on
to another step, or discarded.
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Methodology. LSTM model

Architecture of LSTM model
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Methodology. LSTM model. Architecture of LSTM model

@ Our model consists of three LSTM layers with 512/256/128 neurons and one
single neuron dense layer on the output. Each of LSTM layers is using tanh
activation function (to retain negative values). L2 regularization (0.0005) and
dropout (0.02) are also applied to each of these layers. The first two layers
return sequences with the same shape as the input sequence (full sequence),
the last LSTM layer returns only the last output.

@ To train the model we used Adam optimizer - a stochastic gradient descent
optimizer with momentum (estimating first-order and second-order moments).
The learning rate of the optimizer was set to 0.0015 (after tuning).
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Methodology. LSTM model

Data preprocessing of LSTM model
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Methodology. Artificial Neural Network. Data

preprocessing of LSTM model

@ Logarithmic returns, based on one minute data for both BTC and S&P500,
from 2013-04-01 to 2020-12-31

@ For training set we used around 1000 observations (1371 for BTC and 948 for
S&P500, after tuning). Validation set was set size to 33% of the training set.
Test sets (and also rolling window) size was 90 for BTC and 65 for S&P500
(after turning).

@ Input sequence size for LSTM network was set to 20 for BTC and 14 for
S&P500, batch size was set to 80.

@ The output of the model was a single number predicting the next return value.

@ Based on the sign of the predicted return value we assigned -1, 0, 1 signals.
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Methodology. LSTM model

Hyperpaprameters tuning
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Methodology. Artificial Neural Network. Hyperparameters

tuning

During our research we conducted detailed hyperparameters tuning to ensure the
best possible results from our model. The hyperparameters we tested were:

number of layers (1-5) and neurons in each layer (5-512)

dropout rate (0.001 - 0.2) and 12 kernel regularization (0.0001 - 0.01)

type of optimizer (SGD, RMSProp and Adam variants), learning rate (0.001 -
0.1) and momentum values (0.1-0.9)

training and testing window sizes, sequence length and batch size

number of epochs (10-300) and callbacks (early stopping and model
checkpoint)
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Methodology. Artificial Neural Network. Hyperparameters

tuning

Table 1. Values of hyperparameters selected after network tuning.
Selected Value

Hyperparameter
No. hidden layers 3
No. neurons 512/256/128
Activation function tanh
Dropout rate 0.02
12 regularizer 0.0005
Optimizer Adam
Learning rate 0.00015
BTC train/test 1371/90
S&P train/test 948/65
80
14/20

Batch size
Sequence length

Source: Own study.
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Methodology. LSTM model

Training process of LSTM model
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Methodology. Artificial Neural Network. Training process

of LSTM model

@ For training and prediction we used a walk forward validation/rolling window
approach. Model was trained on around three years of data (equal to train set
length) and then used to for predictions over the next 3 months (equal to test
set length). After that the window was moved by three months ahead and the
model was retrained. A single return value was predicted each time, based on
the last 14/20 (sequence length) values.

@ A single iteration was trained for 40 epochs. Model checkpoint callback
function was used to store the best weights (parameters) of the model based
on the lowest loss function value in specific epoch. There weights were then
used for prediction.
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Methodology

Most common drawbacks in papers
analysing AIS
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Methodology.Most common drawbacks in papers analysing

AlS

@ only one in-sample and one out-of-sample period -> the results are heavily
dependent on the selected period,

@ tests of AIS are performed on only one basis instrument

@ over-optimization,

@ not proper Loss Function,

o forward looking bias in Buy/Sell signals,

@ no any sensitivity analysis referring initially set parameters of the model,
@ data snooping bias,

@ survivorship bias,
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Methodology

Research Description
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Methodology. Research Description

@ Hyperparameters tuning,

@ Buy/Sell signals definitions based on the next day forecasts,

@ Tests for two types of strategies: Long/Short and Long only,

@ New Loss function: MADE,

@ Walk-forward optimization,

@ Equity lines and performance metrics according to Slepaczuk et al. (2018),

@ Sensitivity analysis for various values of Dropout, Sequence length, TrainSet
length, Batch size,

@ The combination of signals across different frequencies (1d, 1h and 15m) and
asset classes (equity - S&P500 index and cryptocurrency - BTCUSD)
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Methodology. Research Description. Loss function

@ We introduce our authorship loss function which better stress usefulness of
forecasting ability of LSTM model in algorithmic investment strategies (AlS).

@ RMSE, MSE, MAE, MAPE, %OP used in 99.9% of similar research are not
proper error function for the evaluation of the forecasting ability of the given
model in AlS.

@ above mentioned error metrics evaluate the accuracy of forecasts which is
often confused with the forecasting ability of the given model in AlS,

1 N

MADL = ;(71) x sign(R; x R;) x abs(R;) (1)

where: MADL is the Mean Absolute Directional Loss, R; is the observed return on
interval i, fA?,- is the predicted return on interval /, sign(X) is the function which
gives the sign of X, abs(X) is the function which gives the absolute value of X and
N is the number of forecasts.
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Methodology. Research Description. Loss function

@ This way, the value the function returns will be equal to the observed
return on investment with the predicted direction, which allows the
model to tell if the prediction will yield profit or loss and how much
this profit or loss will be.

@ MADL was designed specifically for working with AlS's.

@ The function in our model is minimized, so that if it returns the
negative values the strategy will make a profit, and if it returns a
positive value the strategy will generate a loss.
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Data description
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Data description. Data description

@ 1m data for S&P500 index and BTCUSD converted to 15m, 1h and 1d
frequency,

@ The time period for estimation and results presentation: 2013-04-01 -
2021-12-31

@ The time period for results presentation: 2017-01-01 - 2021-12-31

@ The hours of trading for:
e S&P500 index: 3.30pm CET - 10.00pm CET, from Monday to Friday
excluding official holidays,
e BTCUSD: 24h per day, 7 days per week,
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Performance metrics

Performance metrics
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Performance metrics

e aRC

e aSD

e MD

e MLD

e IR*

o |R**

o |IR***; we regard this metric as the most important
@ nObs

@ nTrades
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Base model
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Results. MSE vs. MADL

Table 3. Performance metrics for investment strategies on BTC and S&P500 in the base case scenario
with MSE and MADL loss functions.

aRC aSD MD MLD IR* IR** IR*** nObs nTrades
panel A: BTC1d
BTC 132.41 78.98 83.23 2.96 1.68 2.67 1.19 1461 NA
MSE Long/Short 182.18 78.89 83.23 2.08 2.31 5.05 442 1461 4
MADL 190.47 78.88 48.59 0.85 241 947 21.23 1461 156
Long/Short
MSE Long only 159.07 77.46 83.23 2.85 2.05 3.92 2.19 1461 2
MADL Long only 200.49 57.83 50.79 1.40 3.47 13.69 19.56 1461 78
panel B: S&P500 1 d
S&P500 13.39 20.51 33.92 0.58 0.65 0.26 0.06 1005 NA
MSE Long/Short 0.44 20.53 28.61 2.04 0.02 0.00 0.00 1005 1014
MADL 6.13 20.48 25.09 2.56 0.30 0.07 0.00 1005 168
Long/Short
MSE only 7.90 14.18 16.31 1.47 0.56 0.27 0.01 1005 507
MADL Long only 11.20 12.35 13.08 1.74 0.91 0.78 0.05 1005 84

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. MSE Long/Short and MADL Long/Short stand for the investment strategy with long and short
signals from models optimized with MSE and MADL loss functions, respectively. MSE Long only and MADL
Long only stand for the investment strategy with long only signals from models optimized with MSE and MADL
loss function. The table presents the results in the period between 1 January 2017 and 31 December 2020 for
daily frequency. The hyperparameters of LSTM model for the the base case scenario were set as it was described
in Table 1.
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Results. Base model.BTCUSD
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Results. BTCUSD

BTCUSD Model Results
@ 1d: the best results are for Long/Short (L/S) and Long only (LO)

strategy which at the same time increased return and decrease risk
metrics,

@ 1lh: LO much more efficient than B&H and LS,
@ 15m: LO nor LS can not beat B&H,
@ higher frequencies produce worse results

@ LO is generally better than LS
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Results. Base model. S&P500
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Results. S&P500 index.

S&P500 index. Model Results

@ 1d: the best results for B&H and LO, and much worse for LS

@ 1lh: B&H -> LO -> LS
@ 15m: LO -> LS -> B&H

@ the best results for 156m, then for 1d and lastly for 1h,

@ LO is much better than LS,
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Results. Regressions for returns.

Table 5. Results of regressions for returns: Long/Short and Long only strategies on BTC and S&P500
for three different frequencies

Alpha Std. Err. t pv Beta Std. Err. t pv
panel A: BTC1d vs.
Long/Short 0.0028 0.0011 2.5805 0.0100 ** 0.0613 0.0260 2.3596 0.0184 *
Long only 0.0018 0.0005 3.3295 0.0009 *** 0.5258 0.0130 40.3095 0.0000 ***
panel B: BTC 1 h vs.
Long/Short 0.0000 0.0000 0.6506 0.5153 0.0401 0.0053 7.5261 0.0000 ***
Long only 0.0000 0.0000 1.4969 0.1344 0.5190 0.0027 194.5037 0.0000 ***
panel C: BTC 15 min vs.
Long/Short 0.0000 0.0000 —1.2728 0.2031 —0.0126 0.0027 —4.7162 0.0000 ***
Long only 0.0000 0.0000 —-0.3720 0.7099 0.4944 0.0013 370.3576 0.0000 ***
panel D: S&P5001 d vs.
Long/Short 0.0004 0.0004 0.9501 0.3423 —0.2705 0.0302 —8.9672 0.0000 ***
Long only 0.0002 0.0002 1.2270 0.2201 0.3598 0.0152 23.7180 0.0000 ***
panel E: S&P500 1 h vs.
Long/Short 0.0000 0.0001 —-0.2379 0.8120 —0.0551 0.0119 —4.6340 0.0000 ***
Long only 0.0000 0.0000 —0.0377 0.9699 0.4720 0.0060 79.3050 0.0000 ***
panel F: S&P500 15 min vs.
Long/Short 0.0000 0.0000 1.6450 0.1000 * —0.0874 0.0061 —14.2609 0.0000 ***
Long only 0.0000 0.0000 1.8525 0.0640 * 0.4537 0.0031 147.3734 0.0000 ***

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. Long/Short stands for the investment strategy with long and short signals. Long only stands
for the investment strategy with long only signals. The table presents the results of regressions in the form
of: Ry = a + BR} + €, where R; is the return for tested strategy in period t and R; is the return in of BTC or
S&P500 strategies. Regressions were calculated in the period between 1 January 2017 and 31 December 2020.
The hyperparameters of LSTM model for the the base case scenario were set as it was described in Table 1.
Asterisks *, ** and *** denote statistical significance at the 10%, 1% and 0.1%, respectively.
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Sensitivity analysis for 1h data
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Results. Sensitivity analysis for 1h data

Dropout
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Results. Sensitivity analysis for 1h data. Dropout
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Results. Sensitivity analysis for 1h data. Dropout

Results. Sensitivity analysis for 1h data. Dropout
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Results. Sensitivity analysis for 1h data. Dropout

BTCUSD. Long/Short

@ the most efficient dropout was 2%, i.e. the one selected during hyperparameters tuning

@ the results of the model are rather robust to slight changes in dropout rate,

BTCUSD. Long only

@ the most efficient dropout was 2%, i.e. the one selected during hyperparameters tuning

| A\

@ the results of the model are rather robust to slight changes in dropout rate,

S&P500 index. Long/Short

@ the most efficient dropout was 1%, while 2% selected during hyperparameters tuning was the least efficient,

@ the results of the model are quite robust to slight changes in dropout rate,

S&P500 index. Long only

@ the most efficient dropout was 1%, but 2% selected during hyperparameters tuning gives almost the same results,
@ the results of the model are quite robust to slight changes in dropout rate,
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Results. Sensitivity analysis for 1h data

Sequence length
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Results. Sensitivity analysis for 1h data. Sequence length
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S&P500 index. Long Only
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Results. Sensitivity analysis for 1h data. Sequence length

BTCUSD. Long/Short

@ the most efficient sequence length was 20, i.e. the one selected during hyperparameters tuning

@ the results of the model are not robust to slight changes in sequence length,

BTCUSD. Long only

@ the most efficient sequence length was 20, i.e. the one selected during hyperparameters tuning

| A\

@ the results of the model are not robust to slight changes in sequence length,

S&P500 index. Long/Short

@ the most efficient sequence length was 7, while 14 selected during hyperparameters tuning was the least efficient,
@ the results of the model are not robust to slight changes in dropout rate,

S&P500 index. Long only

@ the most efficient sequence length was 7, while 14 selected during hyperparameters tuning was the least efficient,
@ the results of the model are quite robust to slight changes in dropout rate,
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Results. Sensitivity analysis for 1h data

TrainSet length
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Results. Sensitivity analysis for 1h data. TrainSet length
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Results. Sensitivity analysis for 1h data. TrainSet length

BTCUSD. Long/Short

@ the most efficient TrainSet length was 1371, i.e. the one selected during hyperparameters tuning

@ the results of the model are not robust to slight changes in sequence length,

BTCUSD. Long only

@ the most efficient TrainSet length was 1371, i.e. the one selected during hyperparameters tuning

| A\

@ the results of the model are not robust to slight changes in sequence length,

S&P500 index. Long/Short

@ the most efficient TrainSet length was 1896, while 948 selected during hyperparameters tuning was the least efficient,
@ the results of the model are not robust to slight changes in dropout rate,

S&P500 index. Long only

@ the most efficient TrainSet length was 1896, while 948 selected during hyperparameters tuning was the least efficient,
@ the results of the model are not robust to slight changes in dropout rate,
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Results. Sensitivity analysis for 1h data

Batch Size

Jakub Michankéw, Pawet Sakowski and RobeThe comparison of LSTM in algorithmic inves 21st March 2022 52 /67



Results. Sensitivity analysis for 1h data. Batch Size
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Results. Sensitivity analysis for 1h data. Batch Size
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Results. Sensitivity analysis for 1h data. Batch Size.
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Results. Sensitivity analysis for 1h data. Batch Size

BTCUSD. Long/Short

@ the most efficient Batch Size was 80, i.e. the one selected during hyperparameters tuning

@ the results of the model are not robust to slight changes in sequence length,

BTCUSD. Long only

@ the most efficient Batch Size was 80, i.e. the one selected during hyperparameters tuning

@ the results of the model are quite robust to slight changes in sequence length,

S&P500 index. Long/Short

@ the most efficient Batch Size was 40, while 80 selected during hyperparameters tuning was the least efficient,

@ the results of the model are not robust to slight changes in dropout rate,

S&P500 index. Long only

@ the most efficient Batch Size was 40, while 80 selected during hyperparameters tuning was the least efficient,

| A\

@ the results of the model are not robust to slight changes in dropout rate,

v

HT correct for BTCUSD but should be improved for S&P500
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Combined model on various
frequencies and various assets
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Results. Combined model on different frequencies and

different assets

@ in order to smooth our equity lines and use limited correlations
between AIS on various frequencies and assets we decided to present
Combined results

@ two ways of combinations of signals across frequencies used: 1d, 1h
and 15m:
e approach #1: three signals {1, -1, 1} in the same interval are combined
as {1/3}
o approach #2: three signals {1, -1, 1} in the same interval are combined
as {1}
@ every other aspects of construction of Equity lines stays as it was
before,
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Results. Combined frequencies. BTC. approach #1

approach #1: three signals {1, -1, 1} in the same interval are combined as {1/3}

30,0004

—— BTC
—— Long/Short

~— Long only

20,0004

10,0004

T T T T T
2017 2018 2019 2020 2021

aRC aSDh MD MLD IR* IR**  |R*** nObs nTrades

BTC 13493 89.35 84.01 296 151 243 1.11 140255 NA
Long/Short 7.70 54.02 62.07 290 0.14 0.02 0.00 140255 16902
Long only 81.89 52.65 49.55 1.47 156 2.57 1.43 140255 4048
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Results. Combined frequencies. S&P500. approach #1

approach #1: three signals {1, -1, 1} in the same interval are combined as {1/3}

~—— S&P500

3,500 — Long/Short

~— Long only

3,000

2,500

2017 2018 2019 2020 2021

aRC aSD MD  MLD IR* IR**  |R¥** nObs nTrades

S&P500 1356 19.08 35.34 0.59 0.71 0.27 0.06 26155 NA
Long/Short 599 14.06 21.27 0.76 0.43 0.12 0.01 26155 4262
Long only 10.61 10.88 11.74 0.42 098 0.88 0.22 26155 1134
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Results. Combined RB3M/6M & W10%90% /W20%80%

Results. Combined freq. & assets. RB3M & W10%9 Results. Combined freq. & assets. RB3M & W2

aRC  aSD  MD MLD IR* IR** IR*™*  nObs nTrades aRC  aSD  MD MLD IR* IR*™ IR*™*  nObs nTrades
BTC/SP500 3172 2157 3588 151 147 130 027 140255 NA BTC/SP500 4749 2812 3007 152 169 205 064 140255 NA
Long/Short 722 1380 1858 121 052 020 001 140255 NA Long/Short ~ 7.80 1584 1860 116 049 021 0.0l 140255 NA
Longonly 1962 1175 1243 055 167 264 094 140255 NA Longonly 2741 1501 1457 120 183 343 079 140255 NA
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Results. Combined freq. & assets. RB6M & W10%90% Results. Combined freq. & assets. RB6M & W20%80%

aRC  aSD  MD MLD IR* IR** IR*™*  nObs nTrades aRC  aSD  MD MLD IR* IR*™* IR*™*  nObs nTrades
BTC/SP500 3551 2206 3588 151 155 153 036 140255 NA BTC/SPS00 5376 3017 4124 152 178 2.32 082 140255 NA
Long/Short 737 1405 19.00 121 052 020 001 140255 NA Long/Short 805 1621 1770 116 050 023 002 140255 NA

Longonly 2137 1219 1243 055 175 301 118 140255 NA Longonly 3027 1585 1407 120 191 411 104 140255 NA




Results. Combined model on different frequencies and

different assets

Combined frequencies. BTC & S&P500 approach #1

@ LO->B&H-> LS
@ lower volatility, more smooth equity lines,

Combined freq. & assets

@ W20%80% always better than W10%90%,

@ RB6m always better than RB3m,
@ post factum combined results suggest rare rebalancing and higher weight of BTCUSD in our optimal portfolio,

v

\
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Research Hypotheses Verification

First Hypothesis:

The signals from LSTM model employed in AlS are more efficient than Buy&Hold approach regardless of asset class tested. —>
this hypothesis holds only for BTCUSD (1d_LS, 1d_LO, and 1h_LO) and S&P500 (1d_LO, 15m_LS, and 15m_LO) so we
reject RH1

Second Hypothesis:

The signals from LSTM model employed in AlS are more efficient than Buy&Hold approach regardless of data frequency tested.
—> the best results are for daily data in case of BTCUSD and 15m data in case of S&P500 so we reject RH2

Third Hypothesis:

The signals from LSTM model employed in AlIS are more efficient in case of BTCUSD than in case of S&P500 index. —> for
various frequencies we obtain different results so we reject RH3

Fourth Hypothesis:

The robustness of tested models to various hyperparameters does not depend on asset class tested. —> the results were not
robust for BTCUSD nor for S&P500 but in significantly different way
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Conclusions

o the efficiency of LSTM in AlS strictly depend on HT and the
construction of the model and estimation process

@ proper Loss Function is crucial in model estimation process
@ the results are dependent on asset classes tested and frequencies used

@ final results are not robust to initial assumptions
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Research extensions

@ more extensive SA
@ various Loss Functions
o larger set of HF data possibilities

@ to repeat the whole research with transaction costs included in the
estimation process

@ more careful hyperparameters tuning process, especially in case of
S&P500
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