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Outline

@ Introduction, motivation and inspiration

@ Model overview

@ Numerical examples

@ Concluding thoughts
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The problem: how to price a basket option (efficiently)?

@ Consider a collection of N stocks S;(t), Sz(t), . .., Sn(t) with prices
driven by risk-neutral processes given by

dS;(t) = I’S/(t)dt + ’L/Ji(-)dVV/(t), dVV,'(t)dVVj(t) = p,'yjdt

where 9(-) is some, possibly stochastic, volatility function.
@ Let B(t) be the price of a basket made up of w, shares of each stock:

N
B(t) = Zw,-S,-(t), wj € RY,
=

@ The f, price of a European call on B(t) with strike K and maturity T is:
M(ty)
M(T)

@ Calculation of V(t, B(h); K, T) suffers from the curse of dimensionality
— can we overcome it?

Vo(to, B(t); K, T) = E¢ [ max(B(T) — K,0)|F(t)]|,

@ What if the options are American or Asian or...?
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Insights & Inspirations

Dupire (1994), Dupire (1996), Gyongy (1986): local volatility, mimicking
marginal distributions of complex, multi-dimensional processes;

Piterbarg (2006): Markovian Projection;

@ Borovkova et al. (2012), Lee and Wang (2012): displaced lognormal
volatility skews;

Piterbarg (2005): "effective” parameters;

@ Brigo et al. (2003): moment-matching technique.
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Idea in a nutshell

Goal: build a 1D local vol process: dB(t) = rB(t)dt + owv(t, B(t))B(t)dW(t),
which will — by design — produce the same European option prices as B(t),
but at considerably less computational effort.

But how to get oy (t, B(t))?

@ Map the multi-dimensional basket onto a collection of marginal
distributions generated by "simpler” processes;

@ Use the calibrated marginals to generate European option prices on the
basket;

@ Use option prices to generate LV surface — o.y(t, B(1));

@ Use LV model to price path-dependent and exotic derivatives leveraging
the one-dimensional representation.
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Dupire/Gydngy recap

When will dB(t) = rB(t)dt + a1y (t, B(t))B(t)dW(t), produce the same option
prices as B(t)?

@ repricing of European options between 2 models will be ensured iff they
generate the same marginals distributions at any given time point;

@ ¢%,(T, K) has the interpretation of the conditional expectation of the
stochastic variance of B(t);

@ o2,(T, K) is given by the prices (equivalently, implied vols) of basket
call/put options for a range of strikes, K;, and maturities, T; through the
following formula:

8\/0(1'07 B(to)’ ’(i; T/) i f'K 3Vc(t0, B(to) l<l‘a 7})
aT oK
K2 82 Vc(t07 B(tO) Klv T/)
OK?

ov(T, Ki) =
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Effective Local Volatility: Model Specification

For all T; approximate V¢(-) via a projection of the underlying basket on a
one-dimensional process Y}, s.t.,

Vo(to, B(to): K, Tj) =~ Vo(bo, Yj(b): K, Tj)

M(b) o ax(V(T;) — K.0)| F(t)] .

Q
= M)

with
dY;(t) = rY;(t)dt + & Yi(HdW(t),

where we impose a condition that at every T; the process Y(t) satisfies:

VT ’Ty‘nHYj(E’)_B(E)HLP‘
J
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Mapping the basket B(-) on processes Yi()

For each expiry date T; we will have one corresponding process Y;(t) that will
be calibrated by mapping the basket B(T;).

Table:
method T; T> T3 TN
B(t) B(T4) B(T2) B(Ts) B(Tn)
vi) | [vi(m)]
Yo(t) | Ya(Th) || Ya(T2)]
Ya(t) Ya(T1) | Ya(T2) || Ya(Ts)
Yw(t) | Yw(T1) | Yu(T2) | Yn(Ts) Yn(Tn)

@ Parameters of each Yj(t) select such that its first three moments match
the corresponding moments of the basket.
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Case 1: Lognormal dynamics of basket constituents

Assume that:
Vi dSi(t) = rSi(t)dt + o;Si(t)dWi(t), dWi()dW;(t) = pidt.

@ Unfortunately, the problem of the distribution of the sum of lognormals
remains unresolved...

@ ...but we can prove the following

Proposition (Implied Volatility Skew for a Basket)

Implied volatility for the basket B(t) is increasing in strike K, i.e.:

908
oK

@ This suggests the projection of B(t) on a displaced diffusion process
which also generates a skew.

> 0.
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Displaced Diffusion recap

@ A classical displaced diffusion (DD) process Sy(t) is defined as a
displacement of a lognormal process S(t) with parameter 6 € R

So(t) = S(t) +6, dS(t) = ogS(t)dW(1),
with the following dynamics for Sy(t)

dSq(t) = 0q (Sa(t) — 0)dW(t), Sa(l) = S(t)+ 6.
@ As shown by Lee et al. implied vols for DD are bounded and monotonic:
N O0imp(K, T)
oK

and for 0 > 0: oimp < o andfor 6 < 0: gjmp > o for T > 0.

@ Moreover, the asymptotic implied volatilities for T — 0 are known
explicitly:

sg =sgn o,

o log(S(fp) /K
lim omp(K, T) = 4 ea(S-o)/x—m 1o K# S(b)
T o(1—0/S(t)) for K = S(t).
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Implied volatility surface for a basket vs. a Displaced Diffusion

Volatility sufrace for S1(t)+S2(t) Volatility sufrace for Displaced Diffusion process

implied volatility

strike, K 0 0 time strike, K 0o time
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Matching moments between B(t) and DD processes

For lognormal diffusions it can be shown that
N

Z w;iSi(t)

i=1

N N
]E[B2(t)] = ZZw,-ij,-(to)Sl-(to)e”i(’/Pi-,ff

=1 j=1

E[B(1)]

N N N
BB = 3503w SB)S(6)S(o)emmmstsaris
j=1 k=1

i=1 j=
For each T; Set Y;(T;) := S(T;) + 6; where:

dS(t) = [o;}S(t)AW(t) and S(t): Zw,S,(to

By construction,

ELY;(T)] = S(t) + 6 = L, wiSi(t) = E[B(T))].
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Matching moments between B(t) and DD processes

To match the higher moments we prove the following:

Proposition (Parameters o; and 6;)

Optimal parameters that minimize ming.. >0, |[E[B'(t)] — E[Y/(1)][|2-

are given by:
2t = log <m2—2(m1 —0)9—02> 7

(my — 6)
0 = a16°+ ax6?+ a3 + as,
with
a = 2m —3mymy + ms,
a = —3m}+32my —3memy 4 3m3,
a3 = 3mimy+3mgm? — 6mym3,
a, = —mgmd+m3.

and where my := E[B(t)], mp := E[B?(t)] and m3 := E[B3(t)].
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Case 2: Basket of stocks under the Heston (1993) model

Assume that each individual stock follows the Heston model:

dS;(t) rSi(t)dt +/vi() S ()W, (1), Si(b) > 0,

dyy(t)

rj(V = vi(1)dt 4/ vi()dWio(t),  vi(to) > O,

with correlations
dWj1 (1)dW () = pjdt

dW, 1 (t)dWi 1(t) = pj«dt and
AW, 2(t)dWk2(t) =0 - dt.
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Characteristic function for the Heston model

E[S]F(r)] _ E[enlogsi(f)] = Cblogsj(t)(_in)7 i€C, g S/(t)(U) — E[eiulog S,-(l)]7

where ¢ioq 5,(1) () for the Heston model is given by:

Definition

The ChF for the Heston model is given by:
¢|ogsj(7—)(u; lo, t) = exp (iU|Og(Sj(to)) + C,-(u, t— to)V(to) + Z\,-(u, t— to)) s

with complex values functions A;(u, t — &) and Cj(u, t — &) given by:

1 — ¢~ D1,i(t=to)

Gum) = 57 (5 —%pjiu— D),
(1 — g™ P1i7)
- ) kjvi(t — ) . 2k 1— g/efl:'1 AT
Au,7) = r(iu— 17+ 2L 2 (k) — v — Dy ;) — log ,
j )2 (kj = ipj ) 72 1-g

- - wj — pjiu — D
forr=t—tyand D; ;= \/(n- — yipjit)? + (U2 + iu)y2 and gy = L — 1)
J J " / / Kj — jpjiu + D; J
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Moments for the Basket under the Heston model

E[B° (0] = 30 gt Xy wi - - wip B[Sy (DS, (1) - S (D),

In particular for the first three moments we have:

N
E[B()] = ZW/F/(TO), Fi(ty) = Si(to)e"

N N

> wiwy (prjeit)o () + EISOIEIS (1)]),

=1 j=1

where o? (1) = E[S?(t)] — E?[S;(t)], with E[S?(1)] and E[S?(t)] defined above.
For the third moment we find:

E[B%(1)]

N N N
BB = 305> wiwEIS (000,

= ]: k=1

-
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Moments for the Basket under the Heston model

The third moment, alternatively, can be written as:
N i—1 N i—1

N
SE0 = L wms0]+3) 3 of w EISEOS,(0] ]+ 3" 3 | EISI(0SF ()]

i=1 j=1 i=1 j=1

i—1j—1

N
+ 6 wiwjwk| E[S;(1)S;() Sk(1)] |

i=1 j=1

-

>
Il
=

For the cross expectations we perform a projection on lognormal process, i.e.,

2

where o; is such that E[S?(t)] = E[S?(1)], and dW;(t)dWj(t) = p; ;dt. This yields:
E[Si()Si()Sk()] =~  Fi(to)Fj(to) Fi(to)eiiPiitt iokpikt+ojokrikt,
E[S2(1)S,(1)] ~ F2(to)Fi(to)eiciriittort,
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Example 1: basket of 2 stocks driven by GBM

Initial parameters

S1(t0) = 1.5, Sz(to) = 2.5, o1 = 0.1, 02 = 0.3, p= —0.7, r =0.01 and
maturity is set to T = 2. Calculations based on 10° Monte Carlo paths.

American Option

Implied Vol: S1(T)+S2(T) Option Price: S1(T)+S2(T)
0190 |= = = Implied Vol: S(T) 25 |= = —Option Price: 5 (T)

°
5
N

°
@

Put Option price

implied Volatiities
o

35 a a5 5 55 6 3 35 a a5 B 55 6 65
K strike, K

Figure: Left: Implied volatility surface for the basket B(T) with N = 2 and for the
displaced diffusion. Right: Option prices for American put for both models.
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Example 2: basket of 10 stocks driven by GBM

Initial parameters

S(k) =[1.5, 2.0, 3.0, 1.2, 4.1, 5.2, 1.3, 2.4, 1.6, 2.4]; and volatilities

o =1[0.1, 0.1, 0.2, 0.1, 0.2, 0.2, 0.14, 0.24, 0.3, 0.1]; the correlation
between all the underlying assets is set to p = 0.1; time-to-maturity is T = 2
and interest rate is set to r = 0.

Implied Vol: B(T)= S1(T)+S2(T)+...+S10(T)
= = = Implied Vol: S,(T)

Oprion Price: B(T)= S1(T)+S2(T)+...+ S10(T)
— — —Option Price Sy(T)

Implied Volatilities
o

Put Option price
o

20 25 30 35 40 10 15 20 25 30 35 a0
K strike, K

Figure: Left: Implied volatility surface for the basket B(T) with. N =.10 and for the
displaced diffusion. Right: Option prices fog;American put for both models.



Example 3: basket of 5 stocks driven by Heston

Option Price: B(T) =S1(T)+S2(T)+...+S5(T)

Implied Vol: B(T)=S, (T)+...+S o(T)
— — —Option Price: S,(T)

032 | = — — Implied Vol: S,(T)

°

°
i
R

o
|
Put Option price

Implied Volatiities

12 14 16 18 20 22 24 26 28 30 5 10 15 20
strike strike, K

Figure: Left: Implied volatility surface for the basket B(T) with N = 5 driven by the
Heston model and for the displaced diffusion. Right: Option prices for American put for
both models.
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Example 4: basket of 100 stocks driven by GBM (a la FTSE 100)

Initial parameters

Prices and implied volatilities for N = 100 stocks based on UKX Index
members as of Nov 15. The correlation between all the underlying assets is
set to p = 0.69 (average index correlation); time-to-maturity is T = 2 and
interest rate is set to r = 0.02.

European Option American Option

‘Option price B(T)=S1(T)+...+S100(T)
— =~ — Option price S(T)

Option price B(T)= S1(T)+...S100(T) y

1800 — — — Option price S(T)

1800

1600 1600

1400 1400
1200 1200

1000

Put option price
5
8
8

Put Option price

800

2
8
8

600

3
]
8

400 400

5500 6000 6500 7000 7500 8000 8500 9000 9500 5500 6000 6500 7000 7500 8000 8500 9000 9500
strike, K strike, K

Figure: Left: European put option prices for the basket B(T) with N.= 100 and for the
displaced diffusion. Right: Option prices fer;American put for both models.



Why bother with dimension reduction?

T T
Regular Monte Carlo
I |= = = Projection technique

time in seconds
N
T

0 20 40 60 80 100
dimension of the basket

Figure: Timing results: Standard Monte Carlo (2000 paths) vs. the moment projection.
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Wrap up & conclusions

Novel way of using Markovian Projection: replacing a complex model
with its simpler counterpart such that the two models agree on the prices
of European options

"Effective” approach: no need to solve for or approximate conditional
expectations directly, but rather determine the local volatility surface from
option prices derived by matching marginal distributions.

@ Matching marginals only gives good results for American options

@ Dimension reduction = saving computation time without sacrificing much

in terms of precision
Still work in progress...

Some loose ends to think about

o More efficient/accurate moment matching?
e Extension to stochastic local vol?
o Calibration and extension to different payoffs
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