Effective Local Volatility Model – with Application to Pricing American Basket Options **QFRG Seminar**

Juliusz Jabłecki, Lech A. Grzelak, Dariusz Gatarek E-mail: j.jablecki@uw.edu.pl

December 13th, 2021

Outline

- Introduction, motivation and inspiration
- Model overview
- Numerical examples
- Concluding thoughts

The problem: how to price a basket option (efficiently)?

• Consider a collection of N stocks $S_1(t), S_2(t), \ldots, S_N(t)$ with prices driven by risk-neutral processes given by

$$dS_i(t) = rS_i(t)dt + \psi_i(\cdot)dW_i(t), \quad dW_i(t)dW_j(t) = \rho_{i,j}dt$$

where $\psi(\cdot)$ is some, possibly stochastic, volatility function.

• Let B(t) be the price of a basket made up of ω_n shares of each stock:

$$B(t) = \sum_{j=1}^N \omega_j S_j(t), \quad \omega_j \in \mathbb{R}^+,$$

• The t_0 price of a European call on B(t) with strike K and maturity T is:

$$V_c(t_0, B(t_0); K, T) = \mathbb{E}^{\mathbb{Q}}\left[\frac{M(t_0)}{M(T)} \max(B(T) - K, 0) \middle| \mathcal{F}(t_0)\right],$$

- Calculation of $V_c(t_0, B(t_0); K, T)$ suffers from the curse of dimensionality can we overcome it?
- What if the options are American or Asian or...?

Insights & Inspirations

- Dupire (1994), Dupire (1996), Gyöngy (1986): local volatility, mimicking marginal distributions of complex, multi-dimensional processes;
- Piterbarg (2006): Markovian Projection;
- Borovkova et al. (2012), Lee and Wang (2012): displaced lognormal volatility skews;
- Piterbarg (2005): "effective" parameters;
- Brigo et al. (2003): moment-matching technique.

Idea in a nutshell

Goal: build a 1D local vol process: $d\bar{B}(t) = r\bar{B}(t)dt + \sigma_{LV}(t,\bar{B}(t))\bar{B}(t)dW(t)$, which will – by design – produce the same European option prices as B(t), but at considerably less computational effort.

But how to get $\sigma_{LV}(t, \bar{B}(t))$?

- Map the multi-dimensional basket onto a collection of marginal distributions generated by "simpler" processes;
- Use the calibrated marginals to generate European option prices on the basket;
- Use option prices to generate LV surface $\to \sigma_{LV}(t, \bar{B}(t))$;
- Use LV model to price path-dependent and exotic derivatives leveraging the one-dimensional representation.

Dupire/Gyöngy recap

When will $d\bar{B}(t) = r\bar{B}(t)dt + \sigma_{LV}(t,\bar{B}(t))\bar{B}(t)dW(t)$, produce the same option prices as B(t)?

- repricing of European options between 2 models will be ensured iff they generate the same marginals distributions at any given time point;
- $\sigma_{IV}^2(T,K)$ has the interpretation of the conditional expectation of the stochastic variance of B(t);
- $\sigma_{IV}^2(T,K)$ is given by the prices (equivalently, implied vols) of basket call/put options for a range of strikes, K_i , and maturities, T_i through the following formula:

$$\sigma_{LV}^2(T_j,K_i) = \frac{\frac{\partial V_c(t_0,B(t_0);K_i,T_j)}{\partial T} + rK_i\frac{\partial V_c(t_0,B(t_0);K_i,T_j)}{\partial K_i}}{\frac{1}{2}K_i^2\frac{\partial^2 V_c(t_0,B(t_0);K_i,T_j)}{\partial K_i^2}},$$

Effective Local Volatility: Model Specification

For all T_i approximate $V_c(\cdot)$ via a projection of the underlying basket on a one-dimensional process Y_i , s.t.,

$$V_{c}(t_{0}, B(t_{0}); K, T_{j}) \approx \hat{V}_{c}(t_{0}, Y_{j}(t_{0}); K, T_{j})$$

$$= \mathbb{E}^{\mathbb{Q}} \left[\frac{M(t_{0})}{M(T_{j})} \max(Y_{j}(T_{j}) - K, 0) | \mathcal{F}(t_{0}) \right],$$

with

$$dY_i(t) = rY_i(t)dt + \xi_i Y_i(t)dW(t),$$

where we impose a condition that at every T_i the process $Y_i(t)$ satisfies:

$$\forall T_j: \min_{\xi_j} ||Y_j(T_j) - B(T_j)||_{L^p}.$$

For each expiry date T_i we will have one corresponding process $Y_i(t)$ that will be calibrated by mapping the basket $B(T_i)$.

Table:

method	<i>T</i> ₁	T_2	T_3	 T_N
B(t)	$B(T_1)$	$B(T_2)$	$B(T_3)$	 $B(T_N)$
$Y_1(t)$	$Y_1(T_1)$			
$Y_2(t)$	$Y_2(T_1)$	$Y_2(T_2)$		
$Y_3(t)$	$Y_3(T_1)$	$Y_3(T_2)$	$Y_3(T_3)$	
			• • •	
$Y_N(t)$	$Y_N(T_1)$	$Y_N(T_2)$	$Y_N(T_3)$	 $Y_N(T_N)$

• Parameters of each $Y_i(t)$ select such that its first three moments match the corresponding moments of the basket.

Case 1: Lognormal dynamics of basket constituents

Assume that:

$$\forall i \ \mathrm{d}S_i(t) = rS_i(t)\mathrm{d}t + \sigma_iS_i(t)\mathrm{d}W_i(t), \ \mathrm{d}W_i(t)\mathrm{d}W_i(t) = \rho_{i,j}\mathrm{d}t.$$

- Unfortunately, the problem of the distribution of the sum of lognormals remains unresolved...
- ...but we can prove the following

Proposition (Implied Volatility Skew for a Basket)

Implied volatility for the basket B(t) is increasing in strike K, i.e.:

$$\frac{\partial \sigma_B}{\partial K} > 0.$$

 This suggests the projection of B(t) on a displaced diffusion process which also generates a skew.

Displaced Diffusion recap

• A classical displaced diffusion (DD) process $S_d(t)$ is defined as a displacement of a lognormal process S(t) with parameter $\theta \in \mathbb{R}$

$$S_d(t) = S(t) + \theta$$
, $dS(t) = \sigma_d S(t) dW(t)$,

with the following dynamics for $S_d(t)$

$$\mathrm{d}S_d(t) = \sigma_d\left(S_d(t) - \theta\right)\mathrm{d}W(t), \quad S_d(t_0) = S(t_0) + \theta.$$

As shown by Lee et al. implied vols for DD are bounded and monotonic:

$$\operatorname{sgn} \frac{\partial \sigma_{imp}(K,T)}{\partial K} = \operatorname{sgn} \theta,$$

and for $\theta > 0$: $\sigma_{imp} < \sigma$ and for $\theta < 0$: $\sigma_{imp} > \sigma$ for T > 0.

• Moreover, the asymptotic implied volatilities for $T \to 0$ are known explicitly:

$$\lim_{T \to 0} \sigma_{imp}(K, T) = \begin{cases} \frac{\sigma \log(S(t_0)/K)}{\log((S(t_0) - \theta)/(K - \theta))} & \text{for } K \neq S(t_0) \\ \sigma(1 - \theta/S(t_0)) & \text{for } K = S(t_0). \end{cases}$$

Implied volatility surface for a basket vs. a Displaced Diffusion

Matching moments between B(t) and DD processes

For lognormal diffusions it can be shown that

$$\mathbb{E}[B(t)] = \sum_{i=1}^{N} \omega_{i} S_{i}(t_{0})$$

$$\mathbb{E}[B^{2}(t)] = \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_{i} \omega_{j} S_{i}(t_{0}) S_{j}(t_{0}) e^{\sigma_{i}\sigma_{j}\rho_{i,j}t}$$

$$\mathbb{E}[B^{3}(t)] = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \omega_{i}\omega_{j}\omega_{k} S_{i}(t_{0}) S_{j}(t_{0}) S_{k}(t_{0}) e^{\sigma_{i}\sigma_{j}\rho_{i,j}t + \sigma_{i}\sigma_{k}\rho_{i,k}t + \sigma_{j}\sigma_{k}\rho_{j,k}t}.$$

For each T_j Set $Y_j(T_j) := S(T_j) + \theta_j$ where:

$$\mathrm{d}S(t) = \boxed{\sigma_j} S(t) \mathrm{d}W(t) \text{ and } S(t_0) := \sum_{i=1}^N \omega_i S_i(t_0) - \boxed{\theta_j}.$$

By construction,

$$\mathsf{E}[\mathsf{Y}_j(T_j)] = S(t_0) + \theta_j = \sum_{i=1}^N \omega_i S_i(t_0) = \mathbb{E}[B(T_j)].$$

Matching moments between B(t) and DD processes

To match the higher moments we prove the following:

Proposition (Parameters σ_i and θ_i)

Optimal parameters that minimize $\min_{\theta,\sigma} \quad \sum_{i=2}^{3} ||\mathbb{E}[B^{i}(t)] - \mathbb{E}[Y_{j}^{i}(t)]||_{L^{2}}$. are given by:

$$\sigma^{2}t = \log \left(\frac{m_{2} - 2(m_{1} - \theta)\theta - \theta^{2}}{(m_{1} - \theta)^{2}}\right),$$

$$0 = a_{1}\theta^{3} + a_{2}\theta^{2} + a_{3}\theta + a_{4}.$$

with

$$\begin{array}{rcl} a_1 & = & 2m_1^3 - 3m_2m_1 + m_3, \\ a_2 & = & -3m_1^4 + 3_1^2m_2 - 3m_3m_1 + 3m_2^2, \\ a_3 & = & 3m_1^3m_2 + 3m_3m_1^2 - 6m_1m_2^2, \\ a_4 & = & -m_3m_1^3 + m_2^3. \end{array}$$

and where $m_1 := \mathbb{E}[B(t)]$, $m_2 := \mathbb{E}[B^2(t)]$ and $m_3 := \mathbb{E}[B^3(t)]$.

Case 2: Basket of stocks under the Heston (1993) model

Assume that each individual stock follows the Heston model:

$$\begin{split} \mathrm{d}S_j(t) &= rS_j(t)\mathrm{d}t + \sqrt{v_j(t)}S_j(t)\mathrm{d}W_{j,1}(t), \quad S_j(t_0) > 0, \\ \mathrm{d}v_j(t) &= \kappa_j(\bar{v}_j - v_j(t))\mathrm{d}t + \gamma_j\sqrt{v_j(t)}\mathrm{d}W_{j,2}(t), \quad v_j(t_0) > 0, \end{split}$$

with correlations

$$\begin{aligned} \mathrm{d}W_{j,1}(t)\mathrm{d}W_{j,2}(t) &= \rho_j\mathrm{d}t\\ dW_{j,1}(t)\mathrm{d}W_{k,1}(t) &= \rho_{j,k}\mathrm{d}t \text{ and }\\ dW_{j,2}(t)\mathrm{d}W_{k,2}(t) &= 0\cdot\mathrm{d}t. \end{aligned}$$

Characteristic function for the Heston model

$$\mathbb{E}[S_j^n(t)] = \mathbb{E}[e^{n\log S_j(t)}] = \phi_{\log S_j(t)}(-in), \quad i \in \mathbb{C}, \quad \phi_{\log S_j(t)}(u) = \mathbb{E}[e^{iu\log S_j(t)}],$$

where $\phi_{\log S_i(t)}(u)$ for the Heston model is given by:

Definition

The ChF for the Heston model is given by:

$$\phi_{\log S_j(T)}(u; t_0, t) = \exp\left(iu \log(S_j(t_0)) + \bar{C}_j(u, t - t_0)v(t_0) + \bar{A}_j(u, t - t_0)\right),$$

with complex values functions $A_j(u, t - t_0)$ and $C_j(u, t - t_0)$ given by:

$$\bar{C}_{j}(u,\tau) = \frac{1 - e^{-D_{1,j}(t-t_{0})}}{\gamma_{j}^{2}(1 - g_{j}e^{-D_{1,j}\tau})} \left(\kappa_{j} - \gamma_{j}\rho_{j}iu - D_{1,j}\right),$$

$$\bar{A}_{j}(u,\tau) = r(iu-1)\tau + \frac{\kappa_{j}\bar{v}_{j}(t-t_{0})}{\gamma_{i}^{2}} \left(\kappa_{j} - \gamma_{j}\rho_{j}iu - D_{1,j}\right) - \frac{2\kappa_{j}\bar{v}_{j}}{\gamma_{i}^{2}} \log\left(\frac{1 - g_{j}e^{-D_{1,j}\tau}}{1 - g_{j}}\right),$$

for
$$\tau=t-t_0$$
 and $D_{1,j}=\sqrt{(\kappa_j-\gamma_j\rho_jiu)^2+(u^2+iu)\gamma_j^2}$ and $g_j=\frac{\kappa_j-\gamma_j\rho_jiu-D_{1,j}}{\kappa_j-\gamma_j\rho_jiu+D_{1,j}}$.

Moments for the Basket under the Heston model

$$\mathbb{E}[B^{p}(t)] = \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{p}=1}^{N} \omega_{i_{1}} \cdots \omega_{i_{p}} \mathbb{E}[S_{i_{1}}(t)S_{i_{2}}(t) \cdots S_{i_{p}}(t)],$$

In particular for the first three moments we have:

$$\mathbb{E}[B(t)] = \sum_{i=1}^{N} \omega_i F_i(t_0), \quad F_i(t_0) = S_i(t_0) e^{rt}$$

$$\mathbb{E}[B^2(t)] = \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_i \omega_j \Big(\rho_{i,j} \sigma_i(t) \sigma_j(t) + \mathbb{E}[S_i(t)] \mathbb{E}[S_j(t)] \Big),$$

where $\sigma_i^2(t) = \mathbb{E}[S_i^2(t)] - \mathbb{E}^2[S_i(t)]$, with $\mathbb{E}[S_i^2(t)]$ and $\mathbb{E}[S_i^2(t)]$ defined above. For the third moment we find:

$$\mathbb{E}[B^3(t)] = \sum_{i=1}^N \sum_{j=1}^N \sum_{k=1}^N \omega_i \omega_j \omega_k \mathbb{E}[S_i(t)S_j(t)S_k(t)],$$

Moments for the Basket under the Heston model

The third moment, alternatively, can be written as:

$$\mathbb{E}[B^{3}(t)] = \sum_{i=1}^{N} \omega_{i} \mathbb{E}[S_{i}^{3}(t)] + 3 \sum_{i=1}^{N} \sum_{j=1}^{i-1} \omega_{i}^{2} \omega_{j} \mathbb{E}[S_{i}^{2}(t)S_{j}(t)] + 3 \sum_{i=1}^{N} \sum_{j=1}^{i-1} \omega_{i} \omega_{j}^{2} \mathbb{E}[S_{i}(t)S_{j}^{2}(t)]$$

$$+ 6 \sum_{i=1}^{N} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} \omega_{i} \omega_{j} \omega_{k} \mathbb{E}[S_{i}(t)S_{j}(t)S_{k}(t)].$$

For the cross expectations we perform a projection on lognormal process, i.e.,

$$S_i(t) pprox ar{S}_i(t) = F_i(t_0) \exp\left(-rac{1}{2}\sigma_i^2 t + \sigma_i ar{W}_i(t)
ight), \quad \sigma_i = \sqrt{rac{1}{t}\log\left(rac{\mathbb{E}[S_i^2(t)]}{F_i^2(t_0)}
ight)},$$

where σ_i is such that $\mathbb{E}[S_i^2(t)] = \mathbb{E}[\bar{S}_i^2(t)]$, and $d\bar{W}_i(t)d\bar{W}_j(t) = \rho_{i,j}dt$. This yields:

$$\begin{split} \mathbb{E}[S_i(t)S_j(t)S_k(t)] & \approx & F_i(t_0)F_j(t_0)F_k(t_0)\mathrm{e}^{\sigma_i\sigma_j\rho_{i,j}t+\sigma_i\sigma_k\rho_{i,k}t+\sigma_j\sigma_k\rho_{j,k}t}, \\ \mathbb{E}[S_i^2(t)S_j(t)] & \approx & F_i^2(t_0)F_j(t_0)\mathrm{e}^{2\sigma_i\sigma_j\rho_{i,j}t+\sigma_i^2t}. \end{split}$$

Example 1: basket of 2 stocks driven by GBM

Initial parameters

 $S_1(t_0) = 1.5$, $S_2(t_0) = 2.5$, $\sigma_1 = 0.1$, $\sigma_2 = 0.3$, $\rho = -0.7$, r = 0.01 and maturity is set to T = 2. Calculations based on 10^5 Monte Carlo paths.

00000

Figure: Left: Implied volatility surface for the basket B(T) with N=2 and for the displaced diffusion. Right: Option prices for American put for both models.

Example 2: basket of 10 stocks driven by GBM

Initial parameters

 $\mathbf{S}(t_0) = [1.5, 2.0, 3.0, 1.2, 4.1, 5.2, 1.3, 2.4, 1.6, 2.4]$; and volatilities $\sigma = [0.1, 0.1, 0.2, 0.1, 0.2, 0.2, 0.14, 0.24, 0.3, 0.1]$; the correlation between all the underlying assets is set to $\rho = 0.1$; time-to-maturity is T = 2 and interest rate is set to r = 0.

Figure: Left: Implied volatility surface for the basket B(T) with N = 10 and for the displaced diffusion. Right: Option prices for American put for both models.

00000

Figure: Left: Implied volatility surface for the basket B(T) with N=5 driven by the Heston model and for the displaced diffusion. Right: Option prices for American put for both models.

Example 4: basket of 100 stocks driven by GBM (á la FTSE 100)

Initial parameters

Prices and implied volatilities for N=100 stocks based on UKX Index members as of Nov 15. The correlation between all the underlying assets is set to $\rho=0.69$ (average index correlation); time-to-maturity is T=2 and interest rate is set to r=0.02.

Figure: Left: European put option prices for the basket B(T) with N=100 and for the displaced diffusion. Right: Option prices for American put for both models.

00000

Why bother with dimension reduction?

Figure: Timing results: Standard Monte Carlo (2000 paths) vs. the moment projection.

Wrap up & conclusions

- Novel way of using Markovian Projection: replacing a complex model with its simpler counterpart such that the two models agree on the prices of European options
- "Effective" approach: no need to solve for or approximate conditional expectations directly, but rather determine the local volatility surface from option prices derived by matching marginal distributions.
- Matching marginals only gives good results for American options
- Dimension reduction = saving computation time without sacrificing much in terms of precision
- Still work in progress...
- Some loose ends to think about
 - More efficient/accurate moment matching?
 - Extension to stochastic local vol?
 - Calibration and extension to different payoffs

