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Abstract

This paper uses a unique data set of more than 1,000 synthetic CDO deals to

describe typical structures, their pricing and performance with the aim of identifying

the factors behind the spectacular collapse of this important segment of structured

credit market in late 2008. The data suggests that mark-to-market losses on many

synthetic CDO tranches were much more significant than in case of simpler, lower-

rated products despite the former experiencing little or no impairment of the notional.

The losses were driven instead by the concentration of relatively limited number of

defaults in a short period of time, suggesting that pre-crisis pricing must have seriously

underestimated such risk of default clustering. In view of the post-crisis pick-up in

synthetic CDO issuance, the paper attempts to heed this lesson and offer a simple

factor model of default correlation in the spirit of Marshall-Olkin that is naturally

suited to capturing the temporal dimension of default dependencies that have been

crucial for CSO investors. The model allows building a rich dependence structure

capable of consistently fitting standardized iTraxx and CDX index tranches, which

makes it ideal for pricing bespoke CDOs.

1 Introduction

Synthetic CDOs – or collateralized synthetic obligations, CSOs – are derivative instruments

which allocate the default risk of a pool of underlying credits to different tranches with

different seniorities upon default. What makes synthetic CDOs “synthetic” is the fact that

the referenced pool of assets is a basket of single name credit default swaps (CDS) rather than

a portfolio of cash bonds of the relevant companies. According to an account popularized

in the movie “Big Short” – winner of the 2016 Academy Award for the screenplay adapted
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from Michael Lewis’s book by the same title – “synthetic CDO was the atomic bomb with a

drunk President holding his finger over the button.” Such a colorful – if not very substantive

– representation seems to capture the by now almost consensus view that write-downs on

synthetic CDOs were at the center of “the Panic of 2007.” Indeed, countless articles in

popular press and the blogosphere have been written to demonstrate how synthetic CDOs

apparently spread the contagion of toxic assets throughout the financial system, triggering

the global financial crisis. And the belief that structured finance significantly underperformed

due to outsize downgrades and credit losses found its way even to academic literature (see

e.g. Antoniades and Tarashev, 2014). Yet, despite general stigma around structured credit

products, rigorous empirical evidence on the performance of synthetic CDOs is surprisingly

scant. This paper tries to fill this gap, and does so in two ways.

First, it seeks to enhance understanding of the performance of the synthetic CDO market

during the recent crisis. To this end it employs a unique data set – graciously provided by

JP Morgan1 – with details of over 1,000 bespoke synthetic CDO deals issued between 2002

and 2011. Perhaps the most surprising finding revealed in the data is that the historical loss

rates of bespoke portfolios have tended to be relatively small, with an average default rate

of just 2.5% and no portfolios suffering default-related losses of more than 15%. Similarly,

the average rating downgrade in each name in the database was merely 1.5 notches. Despite

that, the downgrades of CSO tranches have typically been much more severe leading to

considerable mark-to-market losses on most structures (although interestingly quite a few

tranches investigated actually outperformed S&P 500). Hence, the major driver of mark-to-

market losses was not the scale of actual defaults in a particular portfolio, but rather the

perceived concentration of defaults in time, across multiple portfolios.

The second goal of the paper is to go beyond economic history and discuss the pricing

methodology of synthetic CDO tranches. The market standard before the crisis was the

so called Gaussian copula. However, as recently pointed out by Morini (2011), Brigo and

Capponi (2010) and Gatarek and Jab lecki (2015), the copula model is by construction poorly

suited to handling default concentration in time, which is crucial in explaining historical

performance of synthetic CDO tranches as well as understanding pricing patterns and risk-

management strategies in newly issued CSOs. While the market has moved to pricing in a

significantly higher correlation for CSO tranches than before the crisis, the Gaussian copula

model – still widely used in the industry – does not in general allow to control the risk of

joint defaults in a short period of time using the correlation coefficient. In fact, in some

cases the probability of joint defaults can decline as a function of correlation. Although

these problems are generally known to practitioners and sometimes can be circumvented

1The data was initially presented in two notes to clients “Structured Credit After the Crisis” (January
28, 2010) and “CSO v2.0: The New Synthetic CDO Offering” (March 16, 2015).
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by making more or less straightforward tweaks to the model, they indicate major source

of model risk inherent in using the Gaussian copula. With this in mind, the present paper

suggests a viable alternative to the Gaussian copula approach in the form of an intesity-based

generalized Marshall-Olkin model, introduced previously in the context of estimating residual

credit risk in a repo portfolio (Gatarek and Jab lecki, 2015). Unlike other alternatives to the

Gaussian copula model, in particular the so called perfect copula of Hull and White (2005),

Hull and White (2006) and Hull and White (2010), or the generalized Poisson loss model

(Brigo and Capponi, 2010), the model proposed herein is a hybrid of top-down and bottom

up (copula) models, consistent with equity, currency and interest rate models. Similarly as

in Hull and White (2008), although in a completely different setting, the model allows for

dynamic treatment of credit risk and in particular implies a dynamics for default correlation.

As in classic intensity-based approaches (Giesecke, 2003; Morini, 2011), defaults of firms are

driven in the model by firm-specific as well as economy-wide shocks. However, in contrast to

previous approaches, the systematic factor is represented as a sequence of increasing random

variables. This characterization has the interpretation of an invisible chain of dependencies

running through the whole economy whereby a systematic default of i-th obligor causes

defaults of all more systematically risky names. The model is arbitrage-free and allows to

build an almost arbitrarily rich correlation structure, with a multiple systematic factors, each

representing a different default pattern of names in the economy. A technique of calibrating

the model to iTraxx and CDX tranches is discussed. The model produces a very good fit

to market prices (well within bid-ask spreads), allowing for consistent valuation of bespoke

CSO deals.

The rest of the paper proceeds as follows. Section 2 presents the empirical data on the

historical performance of CSO tranches from the JP Morgan database. Section 3 discusses

CDO pricing methodology along with the systematic factor model. Section 4 discusses

calibration and Section 5 briefly concludes.

2 Historical performance of synthetic CDOs

A synthetic CDO – or CSO – is a contract that allocates the default risk of a portfolio

of credits to different tranches.2 A CSO involves a protection buyer, protection seller, a

portfolio of equally weighted credit default swaps on an underlying pool of reference names

1, 2, 3, ..., d, and finally an attachment point A and a detachment point B, determining the

beginning and end of the portfolio loss tranche covered (with 0 ≤ A ≤ B ≤ 1). Tranched

2See Brigo and Capponi (2010) and O’Kane (2008) for an extensive overview.
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loss at time t, LA,Bt , can thus be formally expressed as

LA,B(t) =
1

B − A
[
(L(t)− A)+ − (L(t)−B)+

]
, (1)

where

L(t) =
d∑
i=1

1{τi≤t}
(1−Ri)

d
(2)

denotes normalized portfolio cumulative loss, τi is the default time of name i and Ri is the

recovery rate. For example, a 3-6% tranche will not suffer impairment on its notional as

long as losses on the underlying portfolio stay below 3%; it will take a loss if portfolio losses

are between 3-6% and will be entirely wiped out if portfolio losses exceed 6%. A tranche is

called an equity tranche if its attachment point equals 0%, as a super-senior tranche if its

detachment point equals 100%, and as a mezzanine tranche if it is neither of the above. It

follows that any mezzanine tranche can be represented as a difference between two equity

tranches: one with the detechment point of the original tranche and one detaching at the

attachment point of the original tranche:

LA,B(t) =
1

B − A
[
(L(t)− A)+ − (L(t)−B)+

]
=

1

B − A
[BL0,B(t)− AL0,A(t)] (3)

Both standardized and bespoke CSO are traded. The former reference the pool of credits

making up US and European CDS indexes (CDX and iTraxx, respectively) with a standard-

ized set of attachment and detachment points. The latter in turn are custom made whereby

the composition of the underlying CDS portfolio as well as tranche subordination, width and

other details can be chosen to fit investors’ needs.

As pointed out by Jarrow (2012), CSOs provide a transaction cost minimizing method

of implementing a broad range of technical and fundamental credit views, and thus help to

facilitate efficient allocation of capital in the economy. Although fundamentally a long risk

tranche position resembles a long risk CDS index position, dependence of CDO tranches on

the index spread is just the first-order (“delta”) component of a more complex risk profile.

Due to their unfunded nature and tranche structure – which makes them sensitive not only

to average portfolio CDS spread but also the distribution and correlation of credit quality –

CSOs allow investors to leverage their exposure to portfolio losses. To see this, note that an

investor selling protection on the iTraxx Euro S.24 index suffers losses strictly proportional

to the number of defaults. With 125 names in the index, a default of 5 names with 40%

recovery rate (60% loss on a given credit) implies an impairment of 2.4% on the notional.

In contrast, for a counterparty selling protection on the same index through a 0-3% equity

tranche, the default of 5 names in the pool would imply a loss of 80% (i.e. the contractual

4



Exhibit 1. Synthetic CDO market: global outstanding and issuance

Source: SIFMA

spread would be paid on just 20% of the notional). This feature is obviously reflected in the

relative pricing of the equity tranche and the CDS index. For example, on April 8, 2016,

the spread on iTraxx Euro S.24 5Y 0-3% tranche was quoted at around 1318 bp3 while the

spread on the entire index was just 77 bp. This means that an investor with EUR 100 million

capital looking to secure a return of about 10% could simply invest the entire capital in the

iTraxx Euro equity tranche. Achieving the same return by investing in the index itself would

require increasing leverage to 15:1 by borrowing EUR 1,500 million. Obviously such an

expansion in the gross notional exposure would drastically increase investor’s vulnerability,

as the maximum potential loss would in that case be well above the EUR 100 million capital.

In contrast, in case of the investment in the equity tranche, the maximum loss would be kept

at EUR 100 million – even if the entire portfolio of index names were to default.

Given the OTC nature of synthetic CDOs determining the size of the market is chal-

lenging. Data compiled by Securities Industry and Financial Markets Association (SIFMA)

based on input from a broad range of sources4 suggests that the value of outstanding syn-

thetic CDOs globally stood at just about USD 11 billion in 2015 down from USD 100 billion

in 2006 which attests to the spectacular rise and subsequent collapse of the CSO market. A

similar picture emerges from SIMFA’s issuance data according to which over USD 66 billion

worth of new deals was issued in 2006 compared to a mere USD 1.3 billion in 2013 and a

mere USD 400 million in Q2 2015. One should bear in mind, though, that these statistics

3Using a more common quotation convention for equity tranches, the 1318 bp spread is equivalent to 43%
upfront payment and a running spread of 100 bp.

4These include SIFMA members (securities firms, banks and asset managers) as well as Bloomberg,
Dealogic, Thomson Reuters, and the main rating agencies.

5



probably grossly underestimate CSO market size, because they include only fully funded

structures (i.e. those requiring the deposit of cash to an SPV at the inception of the deal)

and exclude bespoke single-tranche notes. Indeed, data compiled by BNP Paribas indicates

that as much as USD 20 billion synthetic CDO deals were issued in 2014 up from less than

USD 5 billion in 2013 – a stark indication of the market coming back to life amid investors’

hunt for yield in a zero-interest rate world.

To better understand the factors behind the rise and fall of synthetic CDOs between 2004-

2009 it is essential to investigate the performance of standard CSO deals. Such historical

information is virtually unavailable, though, as bespoke CSOs are OTC deals each with its

own unique features. However, based on JP Morgan database of CSO deals – containing

detailed information on more than 1,000 transactions – it is possible to identify typical

underlying CDS portfolios and typical tranche attachment and detachment points. This

exercise has been performed by JP Morgan credit strategists who have graciously allowed

me to use their data in this publication. The analysis led to a formulation of 84 theoretical

CSOs – based on 12 different CDS portfolios and 7 representative tranches most closely

resembling those in the JP Morgan database. As for the database itself, it is difficult to say

precisely how representative of the whole synthetic CDO market it actually is. However,

in the absence of a market-wide database of such OTC deals, the sample provided by JP

Morgan can be considered a useful proxy for describing the general state of the market for

the following reasons: (i) the sample consists of over 1,000 different transactions, and so

is fairly large; (ii) the database includes not just deals originated by JP Morgan, but also

those inherited from Bear Stearns after the takeover, as well as any others purchased over

time, thus covering different business models and practices; (iii) JP Morgan was one of the

first banks to originate these transactions and as such had a variety of different clients and

portfolios; (iv) CSO portfolio construction is to a large extent determined by the client,

with JP Morgan typically hedging its own exposure, hence the sample should not be very

restrictive on the names included and structures offered.

The construction is based on the frequency with which credits appear in the JP Morgan

CSO database, taking into account their ratings, regions and sectors. Portfolios come in

three different sizes (50, 100 and 200 names), have different risk profiles (high grade vs. high

yield), as well as different geographic and sectoral concentration. Added as a benchmark

is also a generic portfolio based on 100 most widely referenced corporate obligors in rated

US CSOs, as reported by Standard & Poor’s5 (Exhibit 2). The selected portfolios are then

tranched according to the most typical attachment and detachment points found in the JP

Morgan database as also reflected in Creditflux data on CSO market activity in 2006-2008.

5See “The Most Widely Referenced Corporate Obligors In Rated U.S. Synthetic CDOs,” Dec 16, 2008,
Standard & Poor’s.
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Exhibit 2. Theoretical underlying CDS portfolios representative of the pre-crisis CSO market

Name Description # Credits Portfolio loss

Generic Top 100 names 100 1.70%
Small Top 50 names 50 3.30%
Large Top 200 names 200 1.00%

All High Grade Top 100 IG names 100 1.70%
High Yield Biased Top 85 IG and top 15 HG 100 2.60%

Top S&P Top 100 names from S&P 100 1.50%
US Centric Top 100 US names 100 1.70%
EU Centric Top 100 EU names 100 0.30%
Asia Centric Top 45 US, 40 EU and 15 Asia names 100 2.00%

Financials Biased Top 65 Industrials and 35 Financials names 100 1.70%
Industrials Biased Top 90 Industrials and 10 Financials names 100 0.30%
Sovereign Biased Top 70 Industrials, 15 Financials and 15 Sovereign names 100 1.90%

Source: JP Morgan data

Exhibit 3. Attachment and detachment points for typical pre-crisis CSOs
Tranche name Att-Det (%)

Equity 0-3
Thin Junior Mezzanine 3-4
Thick Junior Mezzanine 3-7
Thin Senior Mezzanine 7-8
Thick Senior Mezzanine 7-10

Senior 30-100
Portfolio 0-100

Source: JP Morgan data.
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Exhibit 4. Risk-adjusted performance of the representative CSO tranches (December 2006-
January 2010)

Note: calculations based on JP Morgan and Bloomberg data, assuming USD 100 notional
on each portfolio; USD IG and HY bonds denote the iBoxx index of US liquid investment
grade and high yield corporate bonds respectively.

To represent as closely as possible the diversity of products used, an equity, a supersenior and

four types of mezzanine tranches are considered: junior thin and thick and senior thin and

thick (Exhibit 3).6 Different mezzanine tranche widths were popular before the crisis since –

for a given subordination level – manipulating tranche width allowed to fine tune investors’

leverage and thus also the spread received on a deal. Along with the trivial 0-100 tranche

comprising the entire portfolio, this makes up 7 different tranching patterns allowing for the

construction of 84 CSOs. Each of the 84 representative CSOs is thus formed by taking one

of the 12 CDS portfolios and tranching it in one of the 7 specified ways, assuming issuance in

December 2006 and 5-year maturity (to cover the crisis period). Risk-adjusted performance

of all portfolios – i.e. average monthly return divided by standard deviation of monthly

returns – is presented in Exhibit 4 which also features the performance of a long-only S&P

500 portfolio as well as standard bond portfolio benchmarks.

Although the performance metric chosen (average return scaled by standard deviation

of returns) is a very simple one and in particular does not comprehensively account for

CSO risk, it does nonetheless show that the overwhelming majority of CSO portfolios have

produced negative risk-adjusted returns over 2006-2010. Even those few tranches that did

deliver a positive return – e.g. the equity tranche of the EU centric CDS portfolio – have

6The 10-30 senior tranche is omitted, given that such tranches were not very popular before the crisis
(with about 5% share by trade count in Creditflux market data) and because its behavior is not significantly
different from the supersenior 30-100 tranche.
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Exhibit 5. Average bespoke portfolio loss by year of issuance (left-hand panel) and the
cumulative distribution of bespoke portfolio losses (right-hand panel)

Source: JP Morgan CSO database.

done so with considerably greater risk than cash bonds. And this, of course, assuming CSO

risk is captured only by standard deviation of returns – using a more sophisticated metric

would produce even more depressing results. Interestingly, though, poor mark-to-market

valuations have not been driven by actual defaults. The average credit loss (after recovery)

on the CDS portfolios considered was just 1.62%, with a maximum loss of 3.30% on the

small portfolio of 50 high yield corporates. Only one tranche in the sample was completely

wiped out (0-3% on the Small portfolio) while 58 (of which 46 mezzanine) did not suffer any

impairment.

A very similar pattern emerges from the analysis of credit losses on actual bespoke portfo-

lios in the JP Morgan database. Exhibit 5 shows the average bespoke portfolio loss (by year

of issuance) and the cumulative portfolio loss distribution. Consistently with the results for

theoretical portfolios, losses on actual bespoke portfolios have been relatively modest, with

the highest average loss of 3.2% on portfolios issued in 2007. In 66% portfolios losses were

lower than 3% and only 3% of portfolios have suffered losses greater than 7%. Importantly,

none of the 1,000 portfolios tracked by JP Morgan has experienced losses greater than 15%.

By implication, none of the senior and upper mezzanine tranches (with attachment point

above 7%) have suffered credit losses. Only 5% of junior mezzanine and 14% of equity

tranches have been wiped out completely with the average loss on both kinds of tranches

equal 11.8% and 48.5% respectively (Exhibit 6).

In conclusion, synthetic CDOs have underperformed plain vanilla credit products (even

those initially lower rated ones) on a mark-to-market basis, delivering negative returns even

though losses on CDS portfolios have been rather modest and many tranches have not ex-
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Exhibit 6. Share of bespoke tranches in the JP Morgan database to have suffered losses
Tranche Zero Partial Full Average loss

Equity 12% 75% 14% 48.50%
Junior Mezzanine (Att<7%) 78% 16% 5% 11.80%
Upper Mezzanine (Att>7%) 99% 0% 0% 0.60%

Senior 100% 0% 0% 0.00%
Source: JP Morgan data.

perienced actual impairments. This suggests that, contrary to popular accounts, the drastic

price erosion in the CSO market – which led to an effective cessation of issues by 2009

(Exhibit 1) – was not driven by widespread credit losses, but rather the concentration of

relatively limited losses in time.7 The initial pre-crisis pricing and risk assessment of syn-

thetic CDOs must have seriously underestimated such risk of default clustering, a lesson that

should be heeded in view of the post-crisis pick-up in CSO issuance. Thus, the following

section looks at CSO pricing methodology, tries to pinpoint the source of past errors and

hints at a potential solution.

3 CSO pricing

The valuation of synthetic CDO tranches is driven by two parameters: the average spread on

the underlying CDS portfolio and default correlation among the referenced credits, or – more

precisely – dependency among the defaults of respective names. Pricing CSO tranches starts

from the assumption that the overall credit risk in the underlying portfolio – as reflected in

the spread – is fixed. Tranches then divide that risk into components related to idiosyncratic

default drivers and systematic default drivers. Since credit risk in the entire CSO structure

must be equal to that of the underlying CDS portfolio (otherwise straightforward arbitrage

would be possible), a change in the spread of one tranche must be reflected in a corresponding

change in the spread of another tranche somewhere else in the capital structure in order to

keep the average portfolio spread unchanged.

In turn, the pricing of portfolio tranches reflects the relative weight assigned by investors

to idiosyncratic and systematic risk drivers, as captured in default correlation. A low level

of default correlation indicates that companies are more independent and defaults are likely

to be largely isolated, i.e. idiosyncratic. Higher default correlation implies greater likelihood

of companies defaulting together, which translates into higher prices of credit protection on

more senior tranches. Given an industry standard pricing model – the Gaussian copula –

7As pointed out by Brigo and Capponi (2010), in a time span of just one month – between September
7 and October 8, 2008 – seven credit events occurred involving major financial institutions, some of which
happened on the very same day.
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Exhibit 7. Implied correlation for equity and mezzanine tranches on CDX Main portfolio

index spreads and tranche prices can be reverse-engineered to produce a correlation figure

consistent with them. By analogy with the convention in option markets, this value is called

“implied correlation” of CSO tranches.

Exhibit 7 shows implied correlations of equity and junior mezzanine tranches on the

CDX Main portfolio. The crisis has triggered a clear regime shift in implied correlations,

which – in case of equity tranches – have increased since mid-2007 by roughly a factor of

five. It is this marked increase in CSO implied correlations that has triggered massive mark-

to-market valuation losses on most structures, despite – as has been argued above – the

overall sound credit performance of the referenced obligors. The increase in correlation was

supposed to reflect market participants’ concern about the previously underpriced risk of

default clustering. However, within the Gaussian copula framework – applied before the

crisis and unfortunately still widely used as the default valuation model8 – correlation does

not have a clear and intuitive relationship with the probability of losses concentrated in time,

i.e. the very risk that the market has been trying to price in.

3.1 The market standard: Gaussian copula approach

In the Gaussian copula model9 each obligor i is assigned a standard normal variable Ai and

a time-dependent default threshold zi(T ). It is assumed that default occurs before time T

8A variant of the Gaussian copula model is – as of this writing – implemented e.g. in Bloomberg CDO
pricer used by practitioners.

9The discussion will be purposefully brief as the model has been described in detail elsewhere; see e.g.
Andersen and Sidenius (2004); Hull and White (2004).
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if the variable Ai (which itself is not observable and has no dynamics) finds itself below the

threshold zi(T ). Formally,

P(τi ≤ T ) = P(Ai ≤ zi(T )) = PD(T ), (4)

where τi is the default time of credit i and PD(T ) is the T -year probability of default,

calibrated to an obligor’s CDS curve.

Correlation structure in the model is introduced by assuming that all Ai are driven by a

common systematic factor Z and a name-specific idiosyncratic factor Y :

Ai = ρiZ +
√

1− ρ2iYi (5)

where Z and Yi are standard normal with cov(Yi, Yj) = 0 and cov(Yi, Z) = 0. Now the vector

A = [A1, A2, ..., An] is multivariate Gaussian with correlation given by10

Corr(Ai, Aj) = ρiρj (6)

Denote the distribution of A by

P (A1 ≤ a1, ..., An ≤ an) = Φ(a1, ..., an) (7)

then the copula is defined as

CA1,...An(u1, ..., un) = Φ
(
Φ−1(u1), ...,Φ

−1(un)
)

=

= E
(
P
(
A1 ≤ Φ−1(u1), ..., An ≤ Φ−1(un)

)
|Z
)

(8)

Since for a given Z the Ai are independent, the copula can be conveniently reexpressed as

CA1,...,An = E

(
n∏
i=1

P
(
Ai ≤ Φ−1(ui)

)
|Z

)
= E

(
n∏
i=1

P
(
ρiZ +

√
1− ρ2iYi ≤ Φ−1(ui)

)
|Z

)
=

= E

(
n∏
i=1

Φ

(
Φ−1(ui)− ρiZ√

1− ρ2iYi

))
=

ˆ ∞
−∞

n∏
i=1

Φ

(
Φ−1(ui)− ρiZ√

1− ρ2iYi

)
φ(Z)dZ (9)

where φ(Z) is the standard normal density. The probability of joint default is now given by

P(τ1 ≤ T1, ...τn ≤ Tn) =

ˆ ∞
−∞

n∏
i=1

Φ

(
Φ−1(PD(Ti))− ρiZ√

1− ρ2i

)
φ(Z)dZ (10)

10This is the so called asset correlation, not to be confused with default time correlation ρ(τi, τj) and
default indicator correlation ρ(1{i}1{j}). In general, conditional on default probabilities, default correlation
is an increasing function of asset correlation (Hanson, Pesaran, and Schuermann, 2008).
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Although (10) is very convenient numerically (it involves only one-dimensional integration),

this simplicity comes at a cost of reducing the entire dependence structure of a portfolio

of n credits to linear correlations determined by n(n−1)
2

parameters. In practice, to avoid

technical difficulties, popular implementations of the model consisted in setting all ρi equal

to one parameter ρ. Thus, for example, to capture the entire dependence structure in a

CDS index with 125 names (such as iTraxx or CDX), 125×124
2

, i.e. 7750 parameters, would

be collapsed to a single number ρ. Given that the average spread and spread dispersion in

the underlying CDS portfolio are taken as given for the purpose of pricing tranches – and

therefore cannot be changed to reflect the supply-demand imbalance for particular tranches

– correlation has become the main method for quoting prices of standardized and bespoke

synthetic CDOs. Specifically, using the one-factor Gaussian copula, a correlation number

is backed out from traded tranche spreads and increased or decreased as needed to reflect

demand or supply for a particular tranche. This is done either by assuming that each single

[A,B] tranche has its own correlation parameter (compound correlation approach), or –

more commonly – by assigning a different unique correlation to equity tranches [0, A] (base

correlation approach). However, such practice of implying correlation out of market spreads

leads to several important problems.11

First, there is an inherent inconsistency in implying correlations (especially in the more

common base correlation approach), as two components of the same trade – say tranche

[A,B] – are essentially valued with two different models, i.e. Gaussian copulas with two

different correlation parameter values. One practical implication of this is that interpolation

or extrapolation of these mutually inconsistent values – needed e.g. to price bespoke CSO

tranches – can easily produce tranche spreads that are not arbitrage free or may not represent

feasible market scenarios.

Second, collapsing the whole complex portfolio dependence structure – as parameterized

by 7750 parameters for iTraxx or CDX – to a single number leaves out a host of potentially

relevant information. Some names in the portfolio can be very closely related – e.g. those

operating in the same sector – whereas other pairs might not have much in common. Even

assuming that an average between those high- and low-dependence states can be reliably

estimated it is unclear how meaningful it really is.

Third, over and above any problems with inferring correlations or interpolating them in a

no-arbitrage way, Gaussian correlation parameter has no stable and predictable relation with

the probability of joint defaults driving tranche prices. In particular, depending on the time

frame under consideration and obligors’ credit spreads, the probability of joint defaults can

be an increasing, decreasing or non-monotonic, hump shaped, function of asset correlation

(Gatarek and Jab lecki, 2015). The problem with such a non-monotonic pattern is not only

11See e.g. Brigo and Morini (2010) or Morini (2011) for a more detailed critique of implied correlation.
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that it is difficult to understand from an economic point of view, but also that it makes it

in general impossible to know a priori whether – with a given set of PDs – an increase in

correlation will increase or decrease risk exposure.

Finally, we have seen above that the mark-to-market losses on CSO portfolios that have

driven many investors out of the market, leading to its virtual collapse, were related to

investors’ fear of default concentration in time. Gatarek and Jab lecki (2015) show using a set

of simple examples that the Gaussian copula model is incapable of handling such questions.

In fact, for some parameterizations even perfect asset correlation does not produce default

clustering.

3.2 A simple factor model of joint defaults

As a remedy for the flaws inherent in the Gaussian copula approach, Gatarek and Jab lecki

(2015) have recently suggested a simple factor model for correlated defaults in the Marshall-

Olkin tradition, demonstrating its application to residual credit risk measurement of a repo

portfolio. This paper shows how to extend that analysis and use the model for pricing

CDOs. To avoid repetition, the key ideas behind the approach are summarized below only

in the simplest single-factor, deterministic hazard rate setting which will be applied below

to pricing CDOs. However, interested readers should consult Gatarek and Jab lecki (2015),

which presents the general version of the model with stochastic hazard rates and multiple

systematic factors.

Consider d obligors with default times τ1, ..., τd. Assume that default times are exponen-

tially distributed with parameters λ1, ..., λd, which admit natural interpretation as hazard

rates or conditional default probabilities.12 As in the Gaussian model dependence between

default times is introduced by stating that each default can result from the materialization

of either an idiosyncratic factor or a systematic factor – whichever hits sooner. Being hit

by either factor has the mathematical interpretation of the first jump of a specific Pois-

son process. Hence, for each obligor i the time until the arrival of the idiosyncratic factor

is represented simply by an exponential variable Yi with parameter λidioi . However, un-

like in (5) where the systematic factor was a single random variable – in fact one lacking

any dynamics – here a systematic factor is an increasing sequence of exponential variables

Z1 ≤ Z2 ≤ ... ≤ Zd, representing essentially the domino-like sequence in which names are

likely to default for systematic reasons. Under such assumptions, individual obligors’ default

times can be represented as:

τi = min {Yi, Zi} , (11)

12Both here and in model calibration hazard rates are time-dependent, although this is suppressed above
to simplify notation.
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where Y1, ..., Yd and Z1, ..., Zd are independent exponential variables. Obviously, default times

of all obligors, τi, are also exponentially distributed with parameters λi = λidioi + λsysi and

survival probabilities

P(τi > T ) = e−λiT . (12)

The construction of a systematic factor (Z1, ..., Zd) proceeds as follows. Suppose, for

example, that credit “1” is the most sensitive to the systematic factor, credit “2” is less so

but still highly sensitive, and so on, while credit d is the least exposed. Hence, the systematic

factor should first trigger the default of name “1”, then “2” etc. before ultimately hitting d.

To reflect this, assign to each name i a Poisson process Z̃i, with intensity λsysi , whose arrival

triggers the default of credit i, but also – due to the ordering relation – the default of all

the more systematically risky names i− 1, i− 2, ..., 1 (we assume that Poisson processes Z̃i

are independent). Thus, the systematic intensity of each obligor i will be a sum of its own

intensity λsysi and the intensities of the Poisson processes triggering defaults of more senior

names, i.e.
∑d

j=i λ
sys
j . This can be formalized by setting

Zi = min
{
Z̃i : i ≥ j

}
, (13)

where Zi is the Poisson process representing the total systematic exposure of obligor i. Note

that Zi ≤ Zi+1 for i = 1, ..., d − 1, so indeed the family Z1, ..., Zd is a systematic factor.

Since each obligor is also affected by an idiosyncratic shock Yi with intensity λidioi , default

times τi are exponentially distributed with parameters λi = λidioi +
∑d

j=i λ
sys
j and survival

probabilities

P(τi > T ) = P
(

min
{
Yi,min

{
Z̃i, Z̃i+1, ..., Z̃d

}}
> T

)
=

= P
(

min
{
Yi, Z̃i, Z̃i+1, ..., Z̃d

}
> T

)
=

= P(Yi > T )P(Z̃i > T )P(Z̃i+1 > T )...P(Z̃d > T ) = e−λiT .

(14)

The model has several properties that underscore its usefulness in pricing CSO tranches.

First, in line with economic intuition, in the model idiosyncratic defaults tend to be more

frequent than systematic defaults. Second, the definition and construction of a systematic

factor as an increasing sequence of random variables allows capturing the phenomenon of

default clustering in time (in fact in the model only systematic defaults can be multiple). We

have seen above that fear of defaults clustered in time is the most likely factor behind the

drastic re-pricing of the CSO market throughout the crisis and that Gaussian copula does

not capture such phenomena in a reliable way. Third, unlike the Gaussian copula approach,

the model does not rely on any asset correlation input which critically determines tranche

prices but, as we have seen above, can be related to the probability of joint defaults in
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unintuitive ways. Instead, our approach starts from a qualitative analysis of systematic risk

which then determines the breakdown of market-implied hazard rates of each corporate into

idiosyncratic and systematic components, making default correlation the output, not input,

of the model. Importantly, default correlation as implied by the model is not a flat number

but has time dynamics of its own.

4 Calibration examples

This section shows how to calibrate the simple factor model outlined above to market prices

of the most liquid standardized tranches of iTraxx Euro Main, CDX.NA.IG and CDX.NA.HY

CDS indices, referencing European and US investment grade and high yield corporate issuers

respectively.

4.1 Allocating idiosyncratic and systematic risk drivers

The starting point of model calibration is the allocation of market-implied corporate hazard

rates into idiosyncratic and systematic risk components. For example, Gatarek and Jab lecki

(2015) suggest introducing a uniform dependence parameter ρ ∈ [0, 1] which determines the

extent to which default times in the economy are systematic and propose to determine ρ on

the basis of principal components analysis on the CDS spreads of the referenced corporates.

An alternative approach, more convenient in CSO pricing, consists in splitting corporate

obligors into groups, or clusters, that are homogeneous in terms of their exposure to system-

atic risk. Naturally, there is more than one way of doing that, just as there may be different

sources of systematic risk in the financial system. Thus, names can be grouped e.g. on the

basis of their sector, their sensitivity to the general state of the economy, vulnerability to

economic conditions abroad, etc. The model can accommodate that by including different

systematic factors, whereby each factor would be characterized by the order in which it trig-

gers the default of a sequence of risky names. In what follows – consistent with the narrative

in section 3.2 – only a single systematic factor is considered, which however appears enough

to fit current market prices. Although the precise construction of the factor can be optimized

to improve calibration (as will be done in section 4.2), it is useful to first consider a step-

by-step approach, limiting the exercise for presentation purposes to the subset of largest

financial companies included in the iTraxx Euro index (Exhibit 8). As evidenced by the

recent global crisis, financials are clearly exposed to a common risk driver. Such systematic

dependence can be represented in the model by splitting the 10 selected names into 3 groups

similar in terms of their exposure to systematic risk as follows:

• Cluster 1: comprises the three best credits among the euro area financials, i.e. Allianz
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Exhibit 8. Selected iTraxx Euro Financials
Name 5Y CDS spread (bp) S&P rating

Allianz SE 48 AA
Zurich Insurance Co Ltd 48 AA-

Hannover Rueck SE 47 AA-
ING Bank NV 70 A

Aegon NV 85 A-
Aviva PLC 85 A-

Intesa Sanpaolo SpA 133 BBB-
Mediobanca SpA 184 BBB-
UniCredit SpA 185 BBB-

Deutsche Bank AG 198 BBB+

(AA), Zurich Insurance and Hannover Rueck (both AA-). All three insurers have

generally robust business and financial profiles and the main downward pressure on

their credit profile is likely to originate from truly systemic sources such as a prolonged

period of low interest rates (constraining profitability of all financials) or from risks

such as natural catastrophes and pandemic;

• Cluster 2: comprises two insurers (Aviva, Aegon), a notch riskier than their highest

rated peers, along with a well-diversified European universal bank (ING); this is a

mezzanine risk group;

• Cluster 3: comprises the most risky yet still investment grade European banks, three of

which (Intesa, Unicredit, Mediobanka) have large direct exposure to Italian government

which makes them vulnerable to any reemergence of tensions in euro area sovereign debt

markets, and one is Germany’s mega-bank (Deutschebank) which has been struggling to

maintain profitability over the past several years, and is currently particularly sensitive

to investors’ risk perception changes; this is the most risky group.

Building on the general idea presented in section 3.2, each cluster will now be associated

with its own systematic risk driver Z1, Z2, Z3. As in (13), each risk driver is represented as

a Poisson process whose arrival triggers the default of all cluster members and those in the

more junior clusters. The default intensity of systematic risk drivers is linked to the CDS

spread of the least risky name in each cluster. For example, Z1 represents the systematic

risk driver of Cluster 1 and its default intensity is equal to that of Allianz. The first jump

of Z1 – associated e.g. with a Europe-wide natural disaster or a military conflict – triggers

the default of the three highest rated insurers, but in a domino-like way also hits entities in

Clusters 2 and 3. Similarly, a shock affecting Z2 members – e.g. a general drop in European

interest rates deep into the negative territory – causes defaults of the riskier insurers (Aviva,
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Exhibit 9. Stripping of market-implied 5Y hazard rates into various shock components for
selected iTraxx Euro financials

Aegon) as well as all the banks.

λZ1 = λALV

λZ2 = max(λING − λZ1, 0)

λZ3 = max(λISP − λZ2 − λZ1, 0)

(15)

Once the systematic part of credit spreads is allocated, the residual spread component

can be attributed to idiosyncratic risk.13 Such a decomposition ensures consistency, i.e.

guarantees that the intensity of systematic and idiosyncratic risk factors for each name will

add up to that name’s overall default intensity as stripped from the CDS curve. Exhibit 9

shows the result of this process using corporate CDS curves as of March 31, 2016.

Note that, as already hinted above, the proposed construction does not require making

any assumptions about default correlation. A full representation of the default structure

among the selected companies requires instead postulating the order in which the names

default if hit by a systematic shock. This means that default correlation between any two

names over any time horizon – as implied by their CDS curves and the chosen default pattern

– can be simulated and becomes model output, rather than input. The results for our selected

13This construction by default assumes that cluster leaders (ALV, ING, ISP) have no idiosyncratic risk,
but this can be altered if necessary.
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Exhibit 10. Simulated default correlations for selected iTraxx Euro financials (5 years, 10,000
Monte Carlo runs)

UCG MB DB ISP AV AGN ING HNR ZUR ALV

UCG 100% 63% 67% 77% 42% 42% 45% 35% 35% 35%
MB 63% 100% 69% 78% 42% 44% 47% 36% 36% 36%
DB 67% 69% 100% 87% 46% 48% 52% 40% 41% 41%
ISP 77% 78% 87% 100% 53% 56% 60% 46% 47% 47%
AV 42% 42% 46% 53% 100% 74% 85% 65% 67% 67%

AGN 42% 44% 48% 56% 74% 100% 87% 67% 67% 68%
ING 45% 47% 52% 60% 85% 87% 100% 77% 77% 79%
HNR 35% 36% 40% 46% 65% 67% 77% 100% 95% 98%
ZUR 35% 36% 41% 47% 67% 67% 77% 95% 100% 97%
ALV 35% 36% 41% 47% 67% 68% 79% 98% 97% 100%

iTraxx Euro financials – based on 10,000 Monte Carlo runs – are shown in Exhibit 10. In

line with intuition, average correlations in Cluster 1 are clearly much higher than in Cluster

3. Also, correlations between the highest rated names are close to 100% and by some 30

percentage points higher than between the most risky names in the sample. This reflects the

relatively higher share of idiosyncratic risk in the respective hazard rates (on average 20%

in Cluster 3 vs. 8% in Cluster 1). Even this relatively simple exercise demonstrates how

complex default correlation can be and that collapsing the matrix in Exhibit 10 to a single

number by taking the average between the “highs” and the “lows” – as would be required

in the Gaussian copula approach – would drastically misrepresent the otherwise complex

reality.

The method outlined above of simulating jumps of the Poisson processes associated with

each factor can be used naturally to price tranches of the selected basket of iTraxx finan-

cials. Although tranching a 10-name CDS basket would probably not be practical, size was

selected here for presentation purposes only. More realistic extensions are straightforward

and described in greater detail in the following section.

4.2 Calibration to iTraxx Euro and CDX indices

The pricing of CSOs using the model presented in section 3.2 is relatively straightforward and

can be greatly facilitated by using a proper approximation for the process counting defaults

in the underlying CDS pool. To fix ideas, consider a CDO on a CDS portfolio referencing

d names (in the case of Itraxx Europe d = 125) with a uniform deterministic hazard rate R

and loss-given-default LGD = 1−R. To facilitate presentation assume also that the notional

of each obligor is LGD−1. As explained above, for any tranche [A,B] with attachment point

A and detachment point B, the protection seller in a CDO pays tranched loss increments
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at defaults. In exchange, the protection buyer pays a periodic premium K (spread) on the

survival amount on dates T1, T2, ..., TN . For equity tranches (and recently also mezzanine)

part of the premium can also be paid at inception as an upfront UA,B to limit counterparty

credit risk faced by the protection seller. The survival amount – outstanding notional –

associated with a given tranche equals

1− LA,B(t) =

(
B

d

LGD
−N(t)

)+

−
(
A

d

LGD
−N(t)

)+

(16)

where N(t) counts the number of defaults, i.e.

N(t) =
d∑
i=1

1{τi<t} (17)

The discounted protection leg payoff at time t = 0 can be written as

ˆ TN

0

D(0, t)dLA,B(t) (18)

where D(s, t) is the discount factor evaluated at s for time t. Similarly, the discounted

premium leg, at t = 0 is

KA,B

N∑
i=1

δiD(0, Ti) (1− LA,B(Ti)) + UA,B (19)

where δi = Ti − Ti−1. CSO tranches are quoted in the market by the breakeven value of

KA,B that sets the risk-neutral price of a given tranche to zero. Since the tranche value is

calculated by taking the risk-neutral expectation of the difference between the premium and

protection legs, the break-even spread is given by

SA,B(0) =
E
(´ TN

0
D(0, t)dLA,B(t)

)
− UA,B

E
(∑N

i=1 δiD(0, Ti) (1− LA,B(Ti))
) (20)

which under the assumption of deterministic default-free interest rates typically taken in the

market simplifies to

SA,B(0) =

´ TN
0

D(0, t)dE (LA,B(t))− UA,B∑N
i=1 δiD(0, Ti)E (1− LA,B(Ti))

(21)
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In view of (16), the risk-neutral expectation of the survival amount can be expressed using

the default counting process N(t)

E (1− LA,B(t)) = E
(

Bd

LGD
−N(t)

)+

− E
(

Ad

LGD
−N(t)

)+

=

=

n(B)∑
j=0

P (N(t) = j)

(
Bd

LGD
− j
)
−

n(A)∑
j=0

P (N(t) = j)

(
Ad

LGD
− j
)

(22)

where n(k) = max
{
n ∈ N : n < kd

LGD

}
.

It is clear from (21) that the price of CSO tranches and break-even spreads are determined

essentially by the default-counting process N(t). Consider first a very rough closed-form

approximation of N(t), useful in Monte Carlo pricing, which relies crucially on the breakdown

of hazard rates into systematic and idiosyncratic components, with the systematic factor Z

represented by an ordered family Z1 ≤ Z2 ≤ ... ≤ Zd. Let

M(t) =
d∑
i=1

1{Zi<t} (23)

and

Nj(t) =
d∑

i=j+1

1{Yi<t} (24)

denote the number systematic defaults and idiosyncratic defaults in the set of names {j +

1, ..., d}. Using the property that Zi are ordered we easily get

P(M(t) = j) = P(Zj < t < Zj+1) =
(
1− e−tλj

)
−
(
1− e−tλj+1

)
= e−tλj+1 − e−tλj . (25)

Consequently,

P(N(t) = m) =
m∑
j=0

P(M(t) = j)P(Nj(t) = m− j) =

=
m∑
j=0

(
e−tλj+1 − e−tλj

)
P(Nj(t) = m− j). (26)

Assuming that defaults of individual obligors can repeat themselves,14 the point process

14Since in practice defaults of individual obligors cannot repeat themselves – which is equivalent to ran-
domly drawing defaulting names without replacement – this assumption slightly overstates the total number
of defaults. A more rigorous approach to estimating such probabilities is based on the Bernoulli triangle as
suggested originally by Hull and White (2004).
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Nj(t) is a Poisson process with intensity
∑d

i=j+1 λ
idio
i . Hence,

P(Nj(t) = m) ≈ 1

m!

(
t

d∑
i=j+1

λidioi

)m

exp

(
−t

d∑
i=j+1

λidioi

)
. (27)

Such an approximation can be particularly useful in Monte Carlo pricing. A more sophisti-

cated approximation – one that is used in the calibration below – consists in assuming that

the process counting all systematic defaults is Markovian, so that with d ≥ n > i

P (M(Tj+1) = n|M(Tj) = i) = P (M(Tj+1) ≥ n)− P (M(Tj+1) ≥ n+ 1) =

= P (Zn < Tj+1 < Zn+1) =

= exp

(ˆ Tj+1

0

λsysn+1(s)ds

)
− exp

(ˆ Tj+1

0

λsysn (s)ds

)
(28)

where Zi are constructed as in (13). Assuming furtheremore that all idiosyncratic hazard

rates are equal15, i.e. that P(Yi ≤ t) = P(Y1 ≤ t) = 1 − exp
(´ t

0
λidio1 (s)ds

)
for i = 2, ..., d,

leads to an analogous Markovian approximation for the process counting all idiosyncratic

defaults N0(t):

P (N0(Tj+1) = n|N0(Tj) = i) ≈


(d− i) (P(Y1 ≤ Tj+1)− P(Y1 ≤ Tj)) for n = i+ 1

0 for n < i and n > i+ 1

1− (d− i) (P(Y1 ≤ Tj+1)− P(Y1 ≤ Tj)) for n = i

(29)

This methodology, relying crucially on closed-form formulas for transition probabilities

of processes M(t) and N0(t), will be used below to calibrate the model to three main CDS

indices: iTraxx Euro series 24, CDX.NA.IG and CDX.NA.HY (Exhibit 11). The general idea

behind calibration mimics that described in section 4.1, however to make use of Markovian

approximations idiosyncratic hazard rates are assumed to be uniform.

As explained above, to reduce dimensionality the names making up each index (125 in the

case of iTraxx and CDX.NA.IG and 100 for CDX.NA.HY) are grouped into clusters. Then,

each cluster is assigned its own systematic shock the arrival of which triggers the default of

all names in that cluster as well as the ones in more junior clusters. The number of clusters

and their respective sizes are determined so as to ensure best fit of tranches prices to the

market. It turns out that fitting the entire tranche structure for iTraxx Euro simultaneously

for three maturities (3Y, 5Y, 7Y) requires five clusters consisting of 9, 10, 16, 23, and 125

names, respectively. Four clusters of 10, 16, 23, and 125 names were needed to fit the

15This assumption is validated by the fact that the degree of heterogeneity among idiosyncratic hazard
rates of individual names does not materially affect CDO prices. What matters instead is the total sum of
idiosyncratic hazard rates.
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Exhibit 11. iTraxx.EUR.24 tranche mid quotes in basis points and bid-ask spreads in paren-
theses (March 21, 2016)

Att-Det (%) 3Y 5Y 7Y

0-3 2125 (225) 4050 (236) 5387.50 (500)
3-6 42.90 (200) 737.50 (149) 1550 (400)
6-12 45.90 (14) 107.99 (15) 165.86 (38)

12-100 12.89 (3) 33.83 (3) 50.43 (6)
Note: The 0-3 and 3-6 tranches are quoted as an up-front with a running spread of 100 bp.
The remaining tranches are quoted as periodic premium.

Exhibit 12. CDX tranche mid quotes in basis points and bid-ask spreads in parentheses
(March 21, 2016)

Att-Det (%) CDX.NA.IG.25 5Y

0-3 5628.3 (200)
3-7 1504.4 (125)
7-15 43.8 (75)

15-100 -364.1 (30)

Att-Det (%) CDX.NA.HY.25 5Y

0-15 6175 (102)
15-25 961 (88)
25-35 -850 (50)
35-100 -1916 (30)

Note: CDX.NA.IG.25 tranches are quoted as an up-front with a running spread of 100 bp,
whereas the CDX.NA.HY.25 with a spread of 500 bp.

standardized tranches referencing investment grade members of CDX index while tranches

on CDX.NA.HY required introducing five clusters (with 16, 21, 23, 80, and 100 names). In

each case the recovery rate was taken to be standard 40%.

The calibration errors in upfront payment (for tranches 0-3% and 3-6%) and quoted

spread (for tranches 6-12% and 12-100%) are shown in Figure 13, which reveals a very good

fit, well within bid-ask spreads.

An additional virtue of the pricing approach presented above is that once the disaggrega-

tion of hazard rates into idiosyncratic and systematic components is performed, it becomes

possible to gauge the extent to which expected losses are driven by systematic and idiosyn-

cratic factors. To see this, note that by (21) the credit spread for the entire index (tranche

0-100%) effectively represents the risk-neutral expectation of credit loss on the CDS basket:

S0−100(0)
N∑
i=1

δiD(0, Ti) (125− E(N(Ti))) =

ˆ TN

0

D(0, t)dE (L0,100(t)) (30)

The discounted expected loss can be rewritten as

ELoss =

ˆ TN

0

D(0, t)E(N(dt)) =
125∑
i=1

ˆ TN

0

D(0, t)λi(t)(1− Fi(t))dt (31)

with Fi(t) = P(τi < t) being the distribution function describing the default times τ1, ..., τ125
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Exhibit 13. Calibration errors expressed in relation to bid-ask spreads

Att-Det (%)
iTraxx.EUR.24

3Y 5Y 7Y

0-3 0.25 0.23 -0.07
3-6 0.02 -0.24 -0.17
6-12 -0.11 -0.03 0.00

12-100 -0.25 -0.23 -0.09

Att-Det (%) CDX.NA.IG.25 5Y

0-3 0.03
3-7 0.50
7-15 -0.01

15-100 0.45

Att-Det (%) CDX.NA.HY.25 5Y

0-15 -0.00
15-25 -0.00
25-35 -0.46
35-100 2.01

Note: Relative calibration error defined as xmid−xmodel

xask−xbid
, for different tranche spreads (upfronts)

x.

of the respective index names. In the model λi(t) = λidioi (t) + λsysi (t) which leads to the

following decomposition of expected losses into idiosyncratic and systematic parts:

ELoss = ELosssys + ELossidio =

=
125∑
i=1

ˆ TN

0

D(0, t)λsysi (t)(1− Fi(t))dt+
125∑
i=1

ˆ TN

0

D(0, t)λidioi (t)(1− Fi(t))dt (32)

Hence, assuming that index spreads reflect approximately expected losses, the model-based

decomposition of hazard rates can be used to gain insight into the relative weight of idiosyn-

cratic and systematic loss drivers. The results of such decomposition for the iTraxx Europe

index are presented in Exhibit 14. Such representation reveals that the longer the maturity of

a CSO, the lower the contribution of idiosyncratic factors to expected losses and the greater

the contribution of the fatal shock scenario. For the 7Y tenor, almost 60% of portfolio risk

is attributable to the largest cluster, reflecting fear of defaults concentrated in time. As

argued in section 2, this is also the precise factor that has driven mark-to-market losses on

bespoke CSOs throughout the crisis. The only way to express such fears in the language of

the Gaussian copula model is by increasing default correlation parameter (cf. Exhibit 7).

However, given the unstable and opaque relation of default correlation to probability of joint

defaults, the approach suggested in (32) appears much more suitable.
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Exhibit 14. Model-based attribution of expected losses to idiosyncratic factors and clusters
associated with systematic risk (iTraxx Europe as of March 21, 2016)

Factors 3Y 5Y 7Y

Idiosyncratic 28% 26% 25%
Cluster 1 shock (9 names) 14% 11% 12%
Cluster 2 shock (10 names) 31% 25% 23%
Cluster 3 shock (16 names) 0% 2% 4%
Cluster 4 shock (23 names) 3% 2% 2%
Cluster 5 shock (125 names) 19% 38% 57%

5 Conclusions

The goal of this paper was twofold. First, using a unique data set of more than 1,000 CSO

deals, it has tried to shed light on the performance of synthetic CDOs, and in particular the

extent and source of losses that have led to a virtual collapse of that important segment of

structured credit market in 2008. The empirical evidence presented suggests that significant

mark-to-market losses on a vast majority of tranches were not related to widespread credit

events, but rather reflected the concentration of relatively limited credit losses in a short

period of time, that have not been properly reflected in pre-crisis pricing. More generally,

the standard market pricing model – still relying explicitly or implicitly on Gaussian copula

– is not suited very well to handling such concentration of defaults in time. Thus, in view of

the green shoots of recovery in post-crisis CSO issuance, the second goal of the paper was to

present a viable alternative to copula models in the form of an intuitive, analytically tractable

and flexible intensity-based model of default correlation. The model relies on a redefinition

of the systematic factor as a sequence of increasing random variables characterizing the chain

of dependencies running through the financial system. As such, the model is naturally suited

to capturing the temporal dimension of default dependencies that have been crucial for CSO

investors. The calibration demonstrates that the model can consistently fit the standardized

index tranches of iTraxx and CDX and provides a useful decomposition of expected losses

across idiosyncratic and systematic risk drivers.
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